Sefer Bora LiÅësivdin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2220028/publications.pdf

Version: 2024-02-01

71 papers	1,024 citations	471371 17 h-index	477173 29 g-index
71	71	71	1191
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	gpaw-tools $\hat{a}\in$ " higher-level user interaction scripts for GPAW calculations and interatomic potential based structure optimization. Computational Materials Science, 2022, 204, 111201.	1.4	3
2	General-purpose open-source 1D self-consistent Schr $ ilde{A}\P$ dinger-Poisson Solver: Aestimo 1D. Computational Materials Science, 2021, 186, 110015.	1.4	9
3	Growth dynamics of mist-CVD grown ZnO nanoplatelets. Physica B: Condensed Matter, 2021, 614, 413028.	1.3	5
4	Investigation of Structural and Optical Properties of ZnO Thin Films Grown on Different Substrates by Mist-CVD Enhanced with Ozone Gas Produced by Corona Discharge Plasma. Advances in Condensed Matter Physics, 2021, 2021, 1-8.	0.4	3
5	Ab initio study of electronic properties of armchair graphene nanoribbons passivated with heavy metal elements. Solid State Communications, 2019, 296, 8-11.	0.9	9
6	Scattering analysis of ultrathin barrier (< 7Ânm) GaN-based heterostructures. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1,1	5
7	Electronic properties of zigzag ZnO nanoribbons with hydrogen and magnesium passivations. Physica B: Condensed Matter, 2019, 556, 12-16.	1.3	14
8	Structural and optical properties of hexagonal ZnO nanostructures grown by ultrasonic spray CVD. Optik, 2018, 168, 86-91.	1.4	14
9	Negative Differential Resistance Observation and a New Fitting Model for Electron Drift Velocity in GaN-Based Heterostructures. IEEE Transactions on Electron Devices, 2018, 65, 950-956.	1.6	5
10	Electronic and optical properties of black phosphorus doped with Au, Sn and I atoms. Philosophical Magazine, 2018, 98, 155-164.	0.7	20
11	High Figure-of-Merit (${V}_{ext\{BR\}}^{ext\{2\}}$) /\${R}_{ext{ON}}\$) AlGaN/GaN Power HEMT With Periodically C-Doped GaN Buffer and AlGaN Back Barrier. IEEE Journal of the Electron Devices Society, 2018, 6, 1179-1186.	1.2	29
12	Electronic properties of graphene nanoribbons doped with zinc, cadmium, mercury atoms. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 124-129.	1.3	5
13	A Comparative Study of AlGaN and InGaN Back-Barriers in Ultrathin-Barrier AlN/GaN Heterostructures. Journal of Electronic Materials, 2017, 46, 5278-5286.	1.0	10
14	A first principles investigation of the effect of aluminum, gallium and indium impurities on optical properties of \hat{l}^2 -Si3N4 structure. Optik, 2017, 147, 115-122.	1.4	2
15	Evaluation of morphological and chemical differences of gunshot residues in different ammunitions using SEM/EDS technique. Environmental Forensics, 2016, 17, 68-79.	1.3	14
16	Electronic properties of Li-doped zigzag graphene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 543-547.	1.3	12
17	Effect of substitutional As impurity on electrical and optical properties of \hat{I}^2 -Si 3 N 4 structure. Materials Research Bulletin, 2016, 83, 128-134.	2.7	7
18	Scattering analysis of 2DEG mobility in undoped and doped AlGaN/AlN/GaN heterostructures with an in situ Si 3 N 4 passivation layer. Solid-State Electronics, 2016, 118, 12-17.	0.8	5

#	Article	IF	CITATIONS
19	Energy relaxation of hot electrons by LO phonon emission in AlGaN/AlN/GaN heterostructure with in situ Si3N4 passivation. Journal of Alloys and Compounds, 2016, 659, 90-94.	2.8	2
20	Two dimensional electron gas in a hybrid GaN/InGaN/ZnO heterostructure with ultrathin InGaN channel layer. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 79, 67-71.	1.3	7
21	Power-loss mechanisms in surface passivated AlGaN/AlN/GaN heterojunctions. , 2015, , .		0
22	Electron Transport Properties of Two-Dimensional Electron Gas in BexZn1â^'xO/ZnO Heterostructures. Philosophical Magazine, 2015, 95, 79-89.	0.7	1
23	The variation of temperatureâ€dependent carrier concentration and mobility in AlGaN/AlN/GaN heterostructure with SiN passivation. Physica Status Solidi (B): Basic Research, 2015, 252, 1960-1965.	0.7	14
24	Energy Relaxation of Electrons in InGaN Quantum Wells. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1565-1569.	1,1	4
25	The Relationship Between the Surface Morphology and Chemical Composition of Gunshot Residue Particles. Journal of Forensic Sciences, 2015, 60, 1030-1033.	0.9	10
26	Numerical investigation of the 2DEG properties of AlGaN/AlN/GaN HEMT structures with InGaN/GaN MQW back-barrier structure. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 65, 110-113.	1.3	4
27	Analytic modeling of temperature dependence of 2D carrier mobility in as-grown and annealed GalnNAs/GaAs quantum well structures. Semiconductor Science and Technology, 2014, 29, 125009.	1.0	13
28	Optical gain in 1.3-μm electrically driven dilute nitride VCSOAs. Nanoscale Research Letters, 2014, 9, 22.	3.1	4
29	SiC Substrate effects on electron transport in the epitaxial graphene layer. Electronic Materials Letters, 2014, 10, 387-391.	1.0	4
30	Extraction and scattering analyses of 2D and bulk carriers in epitaxial graphene-on-SiC structure. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 63, 87-92.	1.3	6
31	First-principles calculations of Pd-terminated symmetrical armchair graphene nanoribbons. Computational Materials Science, 2013, 68, 18-22.	1.4	26
32	A numerical study on subband structure of $\ln A \ln^2 x N/GaN$ -based HEMT structures with low-indium (x<0.10) barrier layer. Solid State Communications, 2013, 162, 8-12.	0.9	4
33	The effect of InxGa1â^'xN back-barriers on the dislocation densities in Al0.31Ga0.69N/AlN/GaN/InxGa1â^'xN/GaN heterostructures (0.05Ââ‰ÂxÂâ‰Â0.14). Current Applied Physics, 20 224-227.	D1B,113,	3
34	Ab initiostudy of Ru-terminated and Ru-doped armchair graphene nanoribbons. Molecular Physics, 2012, 110, 2295-2300.	0.8	14
35	Temperature dependent energy relaxation time in AlGaN/AlN/GaN heterostructures. Superlattices and Microstructures, 2012, 51, 733-744.	1.4	12
36	Determination of the LO phonon energy by using electronic and optical methods in AlGaN/GaN. Open Physics, 2012, 10, .	0.8	11

#	Article	IF	CITATIONS
37	Grain boundary related electrical transport in Al-rich Al \times Ga1 \hat{a} ° \times N layers grown by metal-organic chemical vapor deposition. Semiconductors, 2011, 45, 33-36.	0.2	1
38	Determination of the in-plane effective mass and quantum lifetime of 2D electrons in AlGaN/GaN based HEMTs. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1625-1628.	0.8	10
39	Numerical optimization of In-mole fractions and layer thicknesses in AlxGa1â^'xN/AlN/GaN high electron mobility transistors with InGaN back barriers. Physica B: Condensed Matter, 2011, 406, 1513-1518.	1.3	7
40	Investigation of low-temperature electrical conduction mechanisms in highly resistive GaN bulk layers extracted withÂSimple Parallel Conduction Extraction Method. Applied Physics A: Materials Science and Processing, 2010, 98, 557-563.	1.1	8
41	The substrate temperature dependent electrical properties of titanium dioxide thin films. Journal of Materials Science: Materials in Electronics, 2010, 21, 692-697.	1.1	14
42	Well parameters of twoâ€dimensional electron gas in Al _{0.88} In _{0.12} N/AlN/GaN/AlN heterostructures grown by MOCVD. Crystal Research and Technology, 2010, 45, 133-139.	0.6	6
43	Numerical simulation of novel ultrathin barrier n-GaN/InAlN/AlN/GaN HEMT structures: Effect of indium-mole fraction, doping and layer thicknesses. Physica B: Condensed Matter, 2010, 405, 4020-4026.	1.3	9
44	Analysis of defect related optical transitions in biased AlGaN/GaN heterostructures. Materials Science in Semiconductor Processing, 2010, 13, 105-108.	1.9	2
45	Double subband occupation of the two-dimensional electron gas in InxAl1â^'xN/AlN/GaN/AlN heterostructures with a low indium content (0.064≤â‰0.140) barrier. Thin Solid Films, 2010, 518, 5572-5575.	0.8	3
46	Determination of the critical indium composition corresponding to the metal–insulator transition in InxGa1â^'xN (0.06⩽x⩽0.135) layers. Current Applied Physics, 2010, 10, 838-841.	1,1	4
47	Improvement of breakdown characteristics in AlGaN/GaN/AlxGa1â^'xN HEMT based on a grading AlxGa1â^'xN buffer layer. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2593-2596.	0.8	22
48	Scattering analysis of two-dimensional electrons in AlGaN/GaN with bulk related parameters extracted by simple parallel conduction extraction method. Journal of Applied Physics, 2010, 108, .	1.1	59
49	Mobility limiting scattering mechanisms in nitride-based two-dimensional heterostructures with the InGaN channel. Semiconductor Science and Technology, 2010, 25, 045024.	1.0	31
50	Contributions of impurity band and electron–electron interactions to magnetoconductance in AlGaN. Philosophical Magazine, 2010, 90, 3591-3599.	0.7	2
51	Large zero-field spin splitting in AlGaN/AlN/GaN/AlN heterostructures. Journal of Applied Physics, 2009, 105, .	1.1	21
52	Electronic transport in n- and p-type modulation doped Ga _{<i>x</i>} Iâ^' <i>x</i> N _{<i>y</i>} As _{1â^'<i>y</i>} <i> i><io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^'<io>1a^</io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></io></i>	0.7	19
53	DX-center energy calculation with quantitative mobility spectrum analysis in n-AlGaAs/GaAs structures with low Al content. Superlattices and Microstructures, 2009, 45, 604-611.	1.4	4
54	A simple parallel conduction extraction method (SPCEM) for MODFETs and undoped GaN-based HEMTs. Microelectronics Journal, 2009, 40, 413-417.	1.1	12

#	Article	IF	CITATIONS
55	Non-adiabatic small polaron hopping conduction in Nb-doped TiO2 thin film. Physica B: Condensed Matter, 2009, 404, 1423-1426.	1.3	52
56	Anomalous temperature dependence of the electrical resistivity in In0.17Ga0.83N. Solid State Communications, 2009, 149, 337-340.	0.9	13
57	Electrical conduction properties of Si δ-doped GaAs grown by MBE. Physica B: Condensed Matter, 2009, 404, 4202-4206.	1.3	7
58	The effect of AlN interlayer thicknesses on scattering processes in lattice-matched AlinN/GaN two-dimensional electron gas heterostructures. New Journal of Physics, 2009, 11, 063031.	1.2	56
59	Determination of two-dimensional electron and hole gas carriers in AlGaN/GaN/AlN heterostructures grown by Metal Organic Chemical Vapor Deposition. Thin Solid Films, 2008, 516, 2041-2044.	0.8	31
60	The persistent photoconductivity effect in AlGaN/GaN heterostructures grown on sapphire and SiC substrates. Journal of Applied Physics, 2008, 103, .	1.1	59
61	Electrical properties of TiO2 thin films. Journal of Non-Crystalline Solids, 2008, 354, 4944-4947.	1.5	113
62	Growth parameter investigation of Al _{0.25} Ga _{0.75} N/GaN/AlN heterostructures with Hall effect measurements. Semiconductor Science and Technology, 2008, 23, 095008.	1.0	24
63	Self-consistent scattering analysis of Al _{0.2} Ga _{0.8} N/AlN/GaN/AlN heterostructures grown on 6H-SiC substrates using photo-Hall effect measurements. Journal of Physics Condensed Matter, 2008, 20, 045208.	0.7	5
64	Stokes Shift and Band Gap Bowing in In _x Ga _{1-x} N (0.060 â‰\$ â‰\$0.105) Grown by Metalorganic Vapour Phase Epitaxy. Acta Physica Polonica A, 2008, 113, 731-739.	0.2	19
65	Scattering analysis of 2DEG carrier extracted by QMSA in undoped Al0.25Ga0.75N/GaN heterostructures. Semiconductor Science and Technology, 2007, 22, 543-548.	1.0	60
66	Mole Fraction Dependence of Mobility in InxGa1â^2xN Alloys. AIP Conference Proceedings, 2007, , .	0.3	0
67	Activation Mechanism in InGaN Grown by MOVPE. AIP Conference Proceedings, 2007, , .	0.3	0
68	Strain Calculations from Hall Measurements in Undoped Al0.25Ga0.75N/GaN HEMT Structures. AIP Conference Proceedings, 2007, , .	0.3	0
69	Electron Transport in Ga-Rich In x Ga 1â^' x N Alloys. Chinese Physics Letters, 2007, 24, 2930-2933.	1.3	6
70	Electronic transport characterization of AlGaNâ^GaN heterostructures using quantitative mobility spectrum analysis. Applied Physics Letters, 2007, 91, .	1.5	27
71	The effect of strain relaxation on electron transport in undoped Al0.25Ga0.75N/GaN heterostructures. Physica B: Condensed Matter, 2007, 399, 132-137.	1.3	8