Paul L Durham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2219995/publications.pdf Version: 2024-02-01

ΡΛΙΙΙ Ι ΠΠΡΗΛΜ

#	Article	IF	CITATIONS
1	Regulation of Calcitonin Geneâ€Related Peptide Secretion From Trigeminal Nerve Cells by Botulinum Toxin Type A: Implications for Migraine Therapy. Headache, 2004, 44, 35-43.	3.9	479
2	Neuron?Clia Signaling in Trigeminal Ganglion: Implications for Migraine Pathology. Headache, 2007, 47, 1008-1023.	3.9	256
3	Calcitonin Gene-Related Peptide (CGRP) and Migraine. Headache, 2006, 46, S3-S8.	3.9	237
4	Regulation of Calcitonin Gene-Related Peptide Secretion by a Serotonergic Antimigraine Drug. Journal of Neuroscience, 1999, 19, 3423-3429.	3.6	177
5	Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Research, 2008, 1196, 22-32.	2.2	154
6	Salivary Levels of CGRP and VIP in Rhinosinusitis and Migraine Patients. Headache, 2006, 46, 24-33.	3.9	135
7	Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. European Journal of Neuroscience, 2006, 23, 2057-2066.	2.6	125
8	Calcitonin Gene-Related Peptide Promotes Cellular Changes in Trigeminal Neurons and Glia Implicated in Peripheral and Central Sensitization. Molecular Pain, 2011, 7, 1744-8069-7-94.	2.1	117
9	Tumor necrosis factor-alpha stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons. Journal of Neurochemistry, 2006, 96, 65-77.	3.9	110
10	CGRP-Receptor Antagonists — A Fresh Approach to Migraine Therapy?. New England Journal of Medicine, 2004, 350, 1073-1075.	27.0	106
11	Stimulation of the Calcitonin Gene-Related Peptide Enhancer by Mitogen-Activated Protein Kinases and Repression by an Antimigraine Drug in Trigeminal Ganglia Neurons. Journal of Neuroscience, 2003, 23, 807-815.	3.6	101
12	Elevated Saliva Calcitonin Geneâ€Related Peptide Levels During Acute Migraine Predict Therapeutic Response to Rizatriptan. Headache, 2009, 49, 1258-1266.	3.9	99
13	Sinus Headache: A Neurology, Otolaryngology, Allergy, and Primary Care Consensus on Diagnosis and Treatment. Mayo Clinic Proceedings, 2005, 80, 908-916.	3.0	97
14	Calcitonin Gene-Related Peptide (CGRP) Receptor Antagonists in the Treatment of Migraine. CNS Drugs, 2010, 24, 539-548.	5.9	87
15	Differential expression of connexins in trigeminal ganglion neurons and satellite glial cells in response to chronic or acute joint inflammation. Neuron Glia Biology, 2008, 4, 295-306.	1.6	74
16	Calcitonin gene-related peptide differentially regulates gene and protein expression in trigeminal glia cells: Findings from array analysis. Neuroscience Letters, 2010, 473, 163-167.	2.1	68
17	Insights Into the Mechanism of OnabotulinumtoxinA in Chronic Migraine. Headache, 2011, 51, 1573-1577.	3.9	67
18	New insights into the molecular actions of serotonergic antimigraine drugs. , 2002, 94, 77-92.		62

Paul L Durham

#	Article	IF	CITATIONS
19	Tonabersat Inhibits Trigeminal Ganglion Neuronalâ€Satellite Glial Cell Signaling. Headache, 2009, 49, 5-20.	3.9	61
20	Two Mechanisms Involved in Trigeminal CGRP Release: Implications for Migraine Treatment. Headache, 2013, 53, 67-80.	3.9	61
21	Inhibition of Calcitonin Geneâ€Related Peptide Function: A Promising Strategy for Treating Migraine. Headache, 2008, 48, 1269-1275.	3.9	57
22	Dietary Grape Seed Polyphenols Repress Neuron and Glia Activation in Trigeminal Ganglion and Trigeminal Nucleus Caudalis. Molecular Pain, 2010, 6, 1744-8069-6-91.	2.1	43
23	Differential Regulation of Mitogen-Activated Protein Kinase-Responsive Genes by the Duration of a Calcium Signal. Molecular Endocrinology, 2000, 14, 1570-1582.	3.7	42
24	Serotonergic Repression of Mitogen-Activated Protein Kinase Control of the Calcitonin Gene-Related Peptide Enhancer. Molecular Endocrinology, 1998, 12, 1002-1009.	3.7	41
25	Repression of Stimulated Calcitonin Gene-Related Peptide Secretion by Topiramate. Headache, 2006, 46, 1291-1295.	3.9	40
26	Diverse Physiological Roles of Calcitonin Gene-Related Peptide in Migraine Pathology: Modulation of Neuronal-Glial-Immune Cells to Promote Peripheral and Central Sensitization. Current Pain and Headache Reports, 2016, 20, 48.	2.9	40
27	Changes in Salivary Prostaglandin Levels During Menstrual Migraine With Associated Dysmenorrhea. Headache, 2010, 50, 844-851.	3.9	39
28	Cocoa-enriched diets enhance expression of phosphatases and decrease expression of inflammatory molecules in trigeminal ganglion neurons. Brain Research, 2010, 1323, 18-32.	2.2	37
29	Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine. Pain Reports, 2017, 2, e628.	2.7	36
30	Neuronal expression and regulation of CGRP promoter activity following viral gene transfer into cultured trigeminal ganglia neurons. Brain Research, 2004, 997, 103-110.	2.2	33
31	Elevated levels of calcitonin gene-related peptide in upper spinal cord promotes sensitization of primary trigeminal nociceptive neurons. Neuroscience, 2016, 339, 491-501.	2.3	31
32	Prolonged Jaw Opening Promotes Nociception and Enhanced Cytokine Expression. Journal of Oral and Facial Pain and Headache, 2016, 30, 34-41.	1.4	26
33	Thyroid parafollicular cells. Molecular Neurobiology, 1996, 13, 257-276.	4.0	21
34	Identification of Cytokines and Signaling Proteins Differentially Regulated by Sumatriptan/Naproxen. Headache, 2012, 52, 80-89.	3.9	21
35	Inhibition of Trigeminal Nociception by Non-invasive Vagus Nerve Stimulation: Investigating the Role of GABAergic and Serotonergic Pathways in a Model of Episodic Migraine. Frontiers in Neurology, 2020, 11, 146.	2.4	21
36	Repression of calcitonin gene-related peptide expression in trigeminal neurons by a Theobroma cacao extract. Journal of Ethnopharmacology, 2008, 115, 238-248.	4.1	20

Paul L Durham

#	Article	IF	CITATIONS
37	Development of functional units within trigeminal ganglia correlates with increased expression of proteins involved in neuron–glia interactions. Neuron Glia Biology, 2010, 6, 171-181.	1.6	18
38	Tumor necrosis factor-Alpha stimulates cytokine expression and transient sensitization of trigeminal nociceptive neurons. Archives of Oral Biology, 2017, 75, 100-106.	1.8	17
39	Differential Regulation of Mitogen-Activated Protein Kinase-Responsive Genes by the Duration of a Calcium Signal. Molecular Endocrinology, 2000, 14, 1570-1582.	3.7	17
40	CGRP receptor antagonists: a new choice for acute treatment of migraine?. Current Opinion in Investigational Drugs, 2004, 5, 731-5.	2.3	16
41	Inclusion of cocoa as a dietary supplement represses expression of inflammatory proteins in spinal trigeminal nucleus in response to chronic trigeminal nerve stimulation. Molecular Nutrition and Food Research, 2013, 57, 996-1006.	3.3	13
42	Central Role of Protein Kinase A in Promoting Trigeminal Nociception in an In Vivo Model of Temporomandibular Disorders. Journal of Oral and Facial Pain and Headache, 2017, 31, 264-274.	1.4	12
43	Eggshell membrane hydrolyzates activate NF-κB in vitro: possible implications for in vivo efficacy. Journal of Inflammation Research, 2015, 8, 49.	3.5	10
44	Dietary supplementation with grape seed extract prevents development of trigeminal sensitization and inhibits pain signaling in a preclinical chronic temporomandibular disorder model. Journal of Oral Pathology and Medicine, 2020, 49, 514-521.	2.7	10
45	Hypervigilance, Allostatic Load, and Migraine Prevention: Antibodies to CGRP or Receptor. Neurology and Therapy, 2021, 10, 469-497.	3.2	9
46	Validation of a novel rat-holding device for studying heat- and mechanical-evoked trigeminal nocifensive behavioral responses. Journal of Orofacial Pain, 2012, 26, 337-44.	1.7	9
47	The role of salivary neuropeptides in pediatrics: Potential biomarkers for integrated therapies. European Journal of Integrative Medicine, 2015, 7, 372-377.	1.7	5
48	Enriched Chicken Bone Broth as a Dietary Supplement Reduces Nociception and Sensitization Associated with Prolonged Jaw Opening. Journal of Oral and Facial Pain and Headache, 2018, 32, 208-215.	1.4	5
49	Noninvasive vagus nerve stimulation and morphine transiently inhibit trigeminal pain signaling in a chronic headache model. Pain Reports, 2020, 5, e881.	2.7	5
50	Neuroprotective Effect of Enriched Chicken Bone Broth as a Dietary Supplement in a Model of Migraine Mediated by Early Life Stress. Journal of Medicinal Food, 2020, 23, 1259-1265.	1.5	4
51	5-HT3/7 and GABA _B receptors mediate inhibition of trigeminal nociception by dietary supplementation of grape seed extract. Nutritional Neuroscience, 2022, 25, 1565-1576.	3.1	4
52	Inhibition of Nociception in a Preclinical Episodic Migraine Model by Dietary Supplementation of Grape Seed Extract Involves Activation of Endocannabinoid Receptors. Frontiers in Pain Research, 2022, 3, 809352.	2.0	4