Xiaoguang Duan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2219981/xiaoguang-duan-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 15,941 232 122 h-index g-index citations papers 7.6 12.1 23,055 244 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
232	Visible-light activation of persulfate ions by Z-scheme perylene diimide/MIL-101(Cr) heterojunction photocatalyst towards efficient degradation of iohexol. <i>Chemical Engineering Journal</i> , 2022 , 435, 13494	1 7 14.7	2
231	Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 1899	9- ⁸ 909	8
230	Nano-sized FeVO4II.1H2O and FeVO4 for peroxymonosulfate activation towards enhanced photocatalytic activity. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107199	6.8	O
229	Carbon Dots Based Photocatalysis for Environmental Applications. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107336	6.8	7
228	High-performance photocatalytic decomposition of PFOA by BiOX/TiO heterojunctions: Self-induced inner electric fields and band alignment <i>Journal of Hazardous Materials</i> , 2022 , 430, 12819	5 ^{12.8}	2
227	Insights into the role of dual reaction sites for single Ni atom Fenton-like catalyst towards degradation of various organic contaminants <i>Journal of Hazardous Materials</i> , 2022 , 430, 128463	12.8	1
226	V2O5 nanodot-decorated laminar C3N4 for sustainable photodegradation of amoxicillin under solar light. <i>Applied Catalysis B: Environmental</i> , 2022 , 303, 120903	21.8	18
225	Amino-functionalized NH-MIL-125(Ti)-decorated hierarchical flowerlike ZnlnS for boosted visible-light photocatalytic degradation. <i>Environmental Research</i> , 2022 , 204, 112368	7.9	1
224	Visible-light-responsive Cl/S co-doped carbon nitride nanotubes for photocatalytic denitrification: A new reaction pathway dominated by photo-electrons. <i>Applied Catalysis B: Environmental</i> , 2022 , 305, 121018	21.8	2
223	Municipal solid waste derived biochars for wastewater treatment: Production, properties and applications. <i>Resources, Conservation and Recycling</i> , 2022 , 177, 106003	11.9	3
222	Kinetics and mechanism of synergistic adsorption and persulfate activation by N-doped porous carbon for antibiotics removals in single and binary solutions. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127083	12.8	14
221	Co/N co-doped carbonized wood sponge with 3D porous framework for efficient peroxymonosulfate activation: Performance and internal mechanism. <i>Journal of Hazardous Materials</i> , 2022 , 421, 126735	12.8	15
220	Bismuth-based complex oxides for photocatalytic applications in environmental remediation and water splitting: A review. <i>Science of the Total Environment</i> , 2022 , 804, 150215	10.2	8
219	Peroxymonosulfate activation by FeO-MnO/CNT nanohybrid electroactive filter towards ultrafast micropollutants decontamination: Performance and mechanism. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127111	12.8	11
218	S-scheme photocatalysis induced by ZnInS nanoribbons-anchored hierarchical CeO hollow spheres for boosted hydrogen evolution <i>Journal of Colloid and Interface Science</i> , 2022 , 620, 253-262	9.3	1
217	Emerging microplastics in the environment: Properties, distributions, and impacts <i>Chemosphere</i> , 2022 , 134118	8.4	1
216	Rational design of Spirulina residue-derived graphene oxide as an efficient metal-free catalyst for sulfathiazole removal. <i>Separation and Purification Technology</i> , 2022 , 290, 120862	8.3	2

(2021-2022)

215	Morphology-dependent photocatalysis of graphitic carbon nitride for sustainable remediation of aqueous pollutants: A mini review. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107438	6.8	1
214	Carbon nitride-based Z-scheme heterojunctions for solar-driven advanced oxidation processes Journal of Hazardous Materials, 2022 , 434, 128866	12.8	6
213	Regulation of energetic hot carriers on Pt/TiO2 with thermal energy for photothermal catalysis. <i>Applied Catalysis B: Environmental</i> , 2022 , 309, 121263	21.8	1
212	Activation of peroxymonosulfate by natural pyrite for efficient degradation of V(IV)-citrate complex in groundwater <i>Journal of Colloid and Interface Science</i> , 2022 , 617, 683-693	9.3	1
211	Sludge-derived biochar toward sustainable Peroxymonosulfate Activation: Regulation of active sites and synergistic production of reaction oxygen species. <i>Chemical Engineering Journal</i> , 2022 , 440, 135897	14.7	1
210	Enzyme-mimicking single-atom FeN4 sites for enhanced photo-Fenton-like reactions. <i>Applied Catalysis B: Environmental</i> , 2022 , 310, 121327	21.8	2
209	Highly dispersive Ru confined in porous ultrathin g-CN nanosheets as an efficient peroxymonosulfate activator for removal of organic pollutants <i>Journal of Hazardous Materials</i> , 2022 , 435, 128939	12.8	3
208	Selective formation of reactive oxygen species in peroxymonosulfate activation by metal-organic framework-derived membranes: A defect engineering-dependent study. <i>Applied Catalysis B: Environmental</i> , 2022 , 312, 121419	21.8	1
207	Peroxymonosulfate oxidation via paralleled nonradical pathways over iron and nitrogen doped porous carbons <i>Science of the Total Environment</i> , 2022 , 836, 155670	10.2	0
206	Three-dimensional nitrogen-doped graphene oxide beads for catalytic degradation of aqueous pollutants. <i>Chemical Engineering Journal</i> , 2022 , 446, 137042	14.7	O
205	Accelerating radical generation from peroxymonosulfate by confined variable Co species toward ciprofloxacin mineralization: ROS quantification and mechanisms elucidation. <i>Applied Catalysis B: Environmental</i> , 2022 , 315, 121542	21.8	2
204	New Insight to Piezocatalytic Peroxymonosulfate Activation: The Critical Role of Dissolved Oxygen in Mediating Radical and Nonradical Pathways. <i>Applied Catalysis B: Environmental</i> , 2022 , 121584	21.8	О
203	Converting waste plastics into construction applications: A business perspective. <i>Environmental Impact Assessment Review</i> , 2022 , 96, 106814	5.3	O
202	Unzipping MWCNTs for controlled edge- and heteroatom-defects in revealing their roles in gas-phase oxidative dehydrogenation of ethanol to acetaldehyde. <i>Chemical Engineering Journal</i> , 2022 , 446, 137150	14.7	1
201	Challenges in radical/nonradical-based advanced oxidation processes for carbon recycling. <i>Chem Catalysis</i> , 2022 ,		3
200	Correlation of Active Sites to Generated Reactive Species and Degradation Routes of Organics in Peroxymonosulfate Activation by Co-Loaded Carbon. <i>Environmental Science & Environmental Science & Env</i>	10.3	17
199	Carbon Nitride Based Z-scheme Photocatalyst for Non-Sacrificial Overall Water Splitting. <i>Materials Today Energy</i> , 2021 , 23, 100915	7	2
198	All-solid-state Z-scheme heterostructures of 1T/2H-MoS2 nanosheets-coupled V doped hierarchical TiO2 spheres for enhanced photocatalytic activity. <i>Materials Today Energy</i> , 2021 , 100901	7	1

197	Nitrogen-doped carbon nanotubes enhanced Fenton chemistry: Role of near-free iron(III) for sustainable iron(III)/iron(II) cycles <i>Water Research</i> , 2021 , 210, 117984	12.5	3
196	Predictors of Mortality in Critically Ill Patients With Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. <i>Frontiers in Medicine</i> , 2021 , 8, 762004	4.9	2
195	A Machine Learning Model for Accurate Prediction of Sepsis in ICU Patients. <i>Frontiers in Public Health</i> , 2021 , 9, 754348	6	2
194	Clinical outcomes and safety of polymyxin B in the treatment of carbapenem-resistant Gram-negative bacterial infections: a real-world multicenter study. <i>Journal of Translational Medicine</i> , 2021 , 19, 431	8.5	2
193	Revisiting the Graphitized Nanodiamond-Mediated Activation of Peroxymonosulfate: Singlet Oxygenation versus Electron Transfer. <i>Environmental Science & Environmental Science </i>	10.3	18
192	Synchronous removal of emulsions and soluble organic contaminants via a microalgae-based membrane system: performance and mechanisms. <i>Water Research</i> , 2021 , 206, 117741	12.5	9
191	Active sites decoration on sewage sludge-red mud complex biochar for persulfate activation to degrade sulfanilamide. <i>Journal of Colloid and Interface Science</i> , 2021 , 608, 1983-1998	9.3	2
190	Advanced oxidation processes for water disinfection: Features, mechanisms and prospects. <i>Chemical Engineering Journal</i> , 2021 , 409, 128207	14.7	53
189	Temperature-Induced Variations in Photocatalyst Properties and Photocatalytic Hydrogen Evolution: Differences in UV, Visible, and Infrared Radiation. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 7277-7285	8.3	9
188	A novel electrocatalytic filtration system with carbon nanotube supported nanoscale zerovalent copper toward ultrafast oxidation of organic pollutants. <i>Water Research</i> , 2021 , 194, 116961	12.5	31
187	Fine-Tuning Radical/Nonradical Pathways on Graphene by Porous Engineering and Doping Strategies. <i>ACS Catalysis</i> , 2021 , 11, 4848-4861	13.1	24
186	Engineered Co2AlO4/CoAl2O4@Al2O3 monolithic catalysts for peroxymonosulfate activation: Co3+/Co2+ and ODefect/OLattice ratios dependence and mechanism. <i>Chemical Engineering Journal</i> , 2021 , 409, 128162	14.7	24
185	Microplastics remediation in aqueous systems: Strategies and technologies. <i>Water Research</i> , 2021 , 198, 117144	12.5	16
184	Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran using manganese dioxide with different crystal structures: A comparative study. <i>Journal of Colloid and Interface Science</i> , 2021 , 592, 416	59429	5
183	Sustainable redox processes induced by peroxymonosulfate and metal doping on amorphous manganese dioxide for nonradical degradation of water contaminants. <i>Applied Catalysis B: Environmental</i> , 2021 , 286, 119903	21.8	35
182	Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways. <i>Applied Catalysis B: Environmental</i> , 2021 , 287, 119963	21.8	90
181	Mechanical agitation accelerated ultrasonication for wastewater treatment: Sustainable production of hydroxyl radicals. <i>Water Research</i> , 2021 , 198, 117124	12.5	9
180	Manganese-Based Micro/Nanomotors: Synthesis, Motion, and Applications. <i>Small</i> , 2021 , e2100927	11	6

(2021-2021)

179	Carbon-based single atom catalyst: Synthesis, characterization, DFT calculations. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	29
178	Persulfate Oxidation of Sulfamethoxazole by Magnetic Iron-Char Composites via Nonradical Pathways: Fe(IV) Versus Surface-Mediated Electron Transfer. <i>Environmental Science & Environmental Science & </i>	10.3	31
177	Quasi-MOF derivative-based electrode for efficient electro-Fenton oxidation. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123423	12.8	28
176	Enhanced removals of micropollutants in binary organic systems by biomass derived porous carbon/peroxymonosulfate. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124459	12.8	16
175	Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: A critical review. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124461	12.8	55
174	Graphitic Carbon Nitride-Based Z-Scheme Structure for Photocatalytic CO2 Reduction. <i>Energy & Energy Fuels</i> , 2021 , 35, 7-24	4.1	42
173	Iron-doped cuprous oxides toward accelerated nonradical oxidation: Doping induced controlled facet transformation and optimized electronic structure. <i>Chemical Engineering Journal</i> , 2021 , 407, 1271	72 4.7	9
172	Mechanistic Investigations of the Pyridinic N C o Structures in Co Embedded N-Doped Carbon Nanotubes for Catalytic Ozonation. <i>ACS ES&T Engineering</i> , 2021 , 1, 32-45		14
171	Biochar cathode: Reinforcing electro-Fenton pathway against four-electron reduction by controlled carbonization and surface chemistry. <i>Science of the Total Environment</i> , 2021 , 754, 142136	10.2	15
170	Synthesis of nitrogen and sulfur doped graphene on graphite foam for electro-catalytic phenol degradation and water splitting. <i>Journal of Colloid and Interface Science</i> , 2021 , 583, 139-148	9.3	14
169	Catalytic oxidation of sulfachloropyridazine by MnO: Effects of crystalline phase and peroxide oxidants. <i>Chemosphere</i> , 2021 , 267, 129287	8.4	14
168	Coupling hydrothermal and photothermal single-atom catalysis toward excellent water splitting to hydrogen. <i>Applied Catalysis B: Environmental</i> , 2021 , 283, 119660	21.8	38
167	Prussian blue analogues as heterogeneous catalysts for hydrogen generation from hydrolysis of sodium borohydride: a comparative study. <i>Chemical Papers</i> , 2021 , 75, 779-788	1.9	
166	Analysis of mRNA-lncRNA and mRNA-lncRNA-pathway co-expression networks based on WGCNA in developing pediatric sepsis. <i>Bioengineered</i> , 2021 , 12, 1457-1470	5.7	9
165	Fe containing template derived atomic FeINC to boost Fenton-like reaction and charge migration analysis on highly active FeIN4 sites. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 14793-14805	13	15
164	Single-atom catalysis in advanced oxidation processes for environmental remediation. <i>Chemical Society Reviews</i> , 2021 , 50, 5281-5322	58.5	164
163	Piezoelectric activation of peroxymonosulfate by MoS2 nanoflowers for the enhanced degradation of aqueous organic pollutants. <i>Environmental Science: Nano</i> , 2021 , 8, 784-794	7.1	21
162	Carbocatalytic ozonation toward advanced water purification. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 18994-19024	13	7

161	Molecular Engineering toward Pyrrolic N-Rich M-N4 (M = Cr, Mn, Fe, Co, Cu) Single-Atom Sites for Enhanced Heterogeneous Fenton-Like Reaction. <i>Advanced Functional Materials</i> , 2021 , 31, 2007877	15.6	43
160	Facile preparation of hydrophilic In2O3 nanospheres and rods with improved performances for photocatalytic degradation of PFOA. <i>Environmental Science: Nano</i> , 2021 , 8, 1010-1018	7.1	8
159	Cobalt porphyrins supported on carbon nanotubes as model catalysts of metal-N4/C sites for oxygen electrocatalysis. <i>Journal of Energy Chemistry</i> , 2021 , 53, 77-81	12	46
158	Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: A review. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125478	12.8	39
157	Edge-Rich Bicrystalline 1T/2H-MoS Cocatalyst-Decorated {110} Terminated CeO Nanorods for Photocatalytic Hydrogen Evolution. <i>ACS Applied Materials & Company Interfaces</i> , 2021 , 13, 35818-35827	9.5	26
156	Improving the Structure Stability of LiNi0.8Co0.15Al0.05O2 by Double Modification of Tantalum Surface Coating and Doping. <i>ACS Applied Energy Materials</i> , 2021 , 4, 8641-8652	6.1	16
155	Density Functional Theory Calculations for Insight into the Heterocatalyst Reactivity and Mechanism in Persulfate-Based Advanced Oxidation Reactions. <i>ACS Catalysis</i> , 2021 , 11, 11129-11159	13.1	31
154	Impacts and mitigation measures of plastic waste: A critical review. <i>Environmental Impact Assessment Review</i> , 2021 , 90, 106642	5.3	7
153	Landfill leachate treatment by persulphate related advanced oxidation technologies. <i>Journal of Hazardous Materials</i> , 2021 , 418, 126355	12.8	11
152	Advances of piezoelectric nanomaterials for applications in advanced oxidation technologies. <i>Current Opinion in Chemical Engineering</i> , 2021 , 33, 100693	5.4	12
151	Size-Controlled Nanoscale Octahedral HKUST-1 as an Enhanced Catalyst for Oxidative Conversion of Vanillic Alcohol: The Mediating Effect of Polyvinylpyrrolidone. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 631, 127639	5.1	O
150	The mechanistic difference of 1T-2H MoS2 homojunctions in persulfates activation: Structure-dependent oxidation pathways. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120460	21.8	17
149	Biomass-derived pyrolytic carbons accelerated Fe(III)/Fe(II) redox cycle for persulfate activation: Pyrolysis temperature-depended performance and mechanisms. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120446	21.8	10
148	Oxidation of amines and their derivatives with persulfate without activation: Impact of mineral oxides and stoichiometric efficiency. <i>Chemical Engineering Journal</i> , 2021 , 426, 131930	14.7	
147	Selective production of singlet oxygen from zinc-etching hierarchically porous biochar for sulfamethoxazole degradation. <i>Environmental Pollution</i> , 2021 , 290, 117991	9.3	2
146	Origins of Electron-Transfer Regime in Persulfate-Based Nonradical Oxidation Processes <i>Environmental Science & Description of the Environmental Science</i>	10.3	38
145	Nanocarbon-Based Catalytic Ozonation for Aqueous Oxidation: Engineering Defects for Active Sites and Tunable Reaction Pathways. <i>ACS Catalysis</i> , 2020 , 10, 13383-13414	13.1	36
144	Cobalt-based coordination polymer-derived hexagonal porous cobalt oxide nanoplate as an enhanced catalyst for hydrogen generation from hydrolysis of borohydride. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 31952-31962	6.7	4

(2020-2020)

143	Graphitic nitride-catalyzed advanced oxidation processes (AOPs) for landfill leachate treatment: A mini review. <i>Chemical Engineering Research and Design</i> , 2020 , 139, 230-240	5.5	27
142	Active sites and reaction mechanism for N-doped carbocatalysis of phenol removal. <i>Green Energy and Environment</i> , 2020 , 5, 444-452	5.7	7
141	Insight into the effect of lignocellulosic biomass source on the performance of biochar as persulfate activator for aqueous organic pollutants remediation: Epicarp and mesocarp of citrus peels as examples. <i>Journal of Hazardous Materials</i> , 2020 , 399, 123043	12.8	79
140	Potential Difference Driving Electron Transfer Defective Carbon Nanotubes toward Selective Oxidation of Organic Micropollutants. <i>Environmental Science & Environmental Scienc</i>	10.3	133
139	Sustainable Catalytic Processes Driven by Graphene-Based Materials. <i>Processes</i> , 2020 , 8, 672	2.9	6
138	Criteria of active sites in nonradical persulfate activation process from integrated experimental and theoretical investigations: boronflitrogen-co-doped nanocarbon-mediated peroxydisulfate activation as an example. <i>Environmental Science: Nano</i> , 2020 , 7, 1899-1911	7.1	36
137	Simultaneous separation of multiphase emulsion mixture and catalytic degradation of BPA via microalgae residue membranes. <i>Chemical Engineering Journal</i> , 2020 , 393, 124750	14.7	10
136	Synergy of NiO quantum dots and temperature on enhanced photocatalytic and thermophoto hydrogen evolution. <i>Chemical Engineering Journal</i> , 2020 , 390, 124634	14.7	14
135	Fast and Long-Lasting Iron(III) Reduction by Boron Toward Green and Accelerated Fenton Chemistry. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 16517-16526	16.4	87
134	Efficient photocatalytic overall water splitting on metal-free 1D SWCNT/2D ultrathin C3N4 heterojunctions via novel non-resonant plasmonic effect. <i>Applied Catalysis B: Environmental</i> , 2020 , 278, 119312	21.8	46
133	Decorated nickel phosphide nanoparticles with nitrogen and phosphorus co-doped porous carbon for enhanced electrochemical water splitting. <i>Journal of Colloid and Interface Science</i> , 2020 , 567, 393-40	P·3	13
132	Porous Carbons: Structure-Oriented Design and Versatile Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 1909265	15.6	119
131	Functional carbon nitride materials for water oxidation: from heteroatom doping to interface engineering. <i>Nanoscale</i> , 2020 , 12, 6937-6952	7.7	20
130	Facile Synthesis of High-Performance Nitrogen-Doped Hierarchically Porous Carbon for Catalytic Oxidation. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 4236-4243	8.3	31
129	Facet- and defect-dependent activity of perovskites in catalytic evolution of sulfate radicals. <i>Applied Catalysis B: Environmental</i> , 2020 , 272, 118972	21.8	48
128	Nonradical oxidation in persulfate activation by graphene-like nanosheets (GNS): Differentiating the contributions of singlet oxygen (1O2) and sorption-dependent electron transfer. <i>Chemical Engineering Journal</i> , 2020 , 393, 124725	14.7	47
127	Unzipping carbon nanotubes to nanoribbons for revealing the mechanism of nonradical oxidation by carbocatalysis. <i>Applied Catalysis B: Environmental</i> , 2020 , 276, 119146	21.8	48
126	Interfacial CoAl2O4 from ZIF-67@FAl2O3 pellets toward catalytic activation of peroxymonosulfate for metronidazole removal. <i>Chemical Engineering Journal</i> , 2020 , 397, 125339	14.7	35

125	The duet of surface and radical-based carbocatalysis for oxidative destructions of aqueous contaminants over built-in nanotubes of graphite. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121486	12.8	13
124	Boride-based electrocatalysts: Emerging candidates for water splitting. <i>Nano Research</i> , 2020 , 13, 293-3	1 <u>4</u> 0	69
123	Nanostructured manganese oxides: natural/artificial formation and their induced catalysis for wastewater remediation. <i>Environmental Science: Nano</i> , 2020 , 7, 368-396	7.1	31
122	Postsynthesis Oxygen Nonstoichiometric Regulation: A New Strategy for Performance Enhancement of Perovskites in Advanced Oxidation. <i>Industrial & Discourse of the Mesearch</i> , 2020 , 59, 99-109	3.9	12
121	Insights into the Electron-Transfer Regime of Peroxydisulfate Activation on Carbon Nanotubes: The Role of Oxygen Functional Groups. <i>Environmental Science & Environmental Sci</i>	10.3	169
120	Biomass-derived functional porous carbons for adsorption and catalytic degradation of binary micropollutants in water. <i>Journal of Hazardous Materials</i> , 2020 , 389, 121881	12.8	40
119	Catalysis of a Single Transition Metal Site for Water Oxidation: From Mononuclear Molecules to Single Atoms. <i>Advanced Materials</i> , 2020 , 32, e1904037	24	46
118	Frontispiece: Fast and Long-Lasting Iron(III) Reduction by Boron Toward Green and Accelerated Fenton Chemistry. <i>Angewandte Chemie - International Edition</i> , 2020 , 59,	16.4	2
117	Boron carbide boosted Fenton-like oxidation: A novel Fe(III)/Fe(II) circulation. <i>Green Energy and Environment</i> , 2020 , 5, 414-422	5.7	7
116	Production, properties, and catalytic applications of sludge derived biochar for environmental remediation. <i>Water Research</i> , 2020 , 187, 116390	12.5	70
115	Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives. <i>Nano Energy</i> , 2020 , 78, 105392	17.1	31
114	Hydroxyl radical dominated elimination of plasticizers by peroxymonosulfate on metal-free boron: Kinetics and mechanisms. <i>Water Research</i> , 2020 , 186, 116361	12.5	34
113	Synergistic Adsorption and Oxidation of Ciprofloxacin by Biochar Derived from Metal-Enriched Phytoremediation Plants: Experimental and Computational Insights. <i>ACS Applied Materials & Interfaces</i> , 2020 ,	9.5	35
112	Mechanistic investigations of N-doped graphene/2H(1T)-MoS2 for Li/K-ions batteries. <i>Nano Energy</i> , 2020 , 78, 105352	17.1	9
111	Selective adsorption of rare earth ions from aqueous solution on metal-organic framework HKUST-1. <i>Chemical Engineering Journal Advances</i> , 2020 , 1, 100009	3.6	18
110	Ultrafine copper nanoclusters and single sites for Fenton-like reactions with high atom utilities. <i>Environmental Science: Nano</i> , 2020 , 7, 2595-2606	7.1	8
109	Fast and Long-Lasting Iron(III) Reduction by Boron Toward Green and Accelerated Fenton Chemistry. <i>Angewandte Chemie</i> , 2020 , 132, 16660-16669	3.6	10
108	Roles of structure defect, oxygen groups and heteroatom doping on carbon in nonradical oxidation of water contaminants. <i>Water Research</i> , 2020 , 185, 116244	12.5	77

107	Iridium-based nanomaterials for electrochemical water splitting. <i>Nano Energy</i> , 2020 , 78, 105270	17.1	73
106	Graphitic Carbon Nitride Microtubes for Efficient Photocatalytic Overall Water Splitting: The Morphology Derived Electrical Field Enhancement. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 14386-14396	8.3	16
105	Catalytic degradation of antibiotics by metal-free catalysis over nitrogen-doped graphene. <i>Catalysis Today</i> , 2020 , 357, 341-349	5.3	29
104	Synergy of carbocatalytic and heat activation of persulfate for evolution of reactive radicals toward metal-free oxidation. <i>Catalysis Today</i> , 2020 , 355, 319-324	5.3	13
103	Graphitic biochar catalysts from anaerobic digestion sludge for nonradical degradation of micropollutants and disinfection. <i>Chemical Engineering Journal</i> , 2020 , 384, 123244	14.7	58
102	Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity. <i>Journal of Hazardous Materials</i> , 2020 , 385, 121518	12.8	50
101	High-performance porous graphene from synergetic nitrogen doping and physical activation for advanced nonradical oxidation. <i>Journal of Hazardous Materials</i> , 2020 , 381, 121010	12.8	33
100	The Intrinsic Nature of Persulfate Activation and N-Doping in Carbocatalysis. <i>Environmental Science & Eamp; Technology</i> , 2020 , 54, 6438-6447	10.3	188
99	Photocatalytic activation of peroxymonosulfate by surface-tailored carbon quantum dots. <i>Journal of Hazardous Materials</i> , 2020 , 395, 122695	12.8	36
98	Role of oxygen vacancies and Mn sites in hierarchical Mn2O3/LaMnO3-perovskite composites for aqueous organic pollutants decontamination. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 546-554	21.8	91
97	Peroxydisulfate activation by positively polarized carbocatalyst for enhanced removal of aqueous organic pollutants. <i>Water Research</i> , 2019 , 166, 115043	12.5	86
96	Synergy of nitrogen doping and structural defects on hierarchically porous carbons toward catalytic oxidation via a non-radical pathway. <i>Carbon</i> , 2019 , 155, 268-278	10.4	38
95	Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals. <i>Water Research</i> , 2019 , 167, 115110	12.5	86
94	New insight to the role of edges and heteroatoms in nanocarbons for oxygen reduction reaction. <i>Nano Energy</i> , 2019 , 66, 104096	17.1	44
93	Adsorption of cerium (III) by HKUST-1 metal-organic framework from aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2019 , 542, 421-428	9.3	51
92	Nickel in hierarchically structured nitrogen-doped graphene for robust and promoted degradation of antibiotics. <i>Journal of Cleaner Production</i> , 2019 , 218, 202-211	10.3	26
91	Origins of boron catalysis in peroxymonosulfate activation and advanced oxidation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 23904-23913	13	33
90	Interfacial-engineered cobalt@carbon hybrids for synergistically boosted evolution of sulfate radicals toward green oxidation. <i>Applied Catalysis B: Environmental</i> , 2019 , 256, 117795	21.8	62

89	Occurrence of both hydroxyl radical and surface oxidation pathways in N-doped layered nanocarbons for aqueous catalytic ozonation. <i>Applied Catalysis B: Environmental</i> , 2019 , 254, 283-291	21.8	61
88	Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14971-15005	13	281
87	Insights into nitrogen and boron-co-doped graphene toward high-performance peroxymonosulfate activation: Maneuverable N-B bonding configurations and oxidation pathways. <i>Applied Catalysis B: Environmental</i> , 2019 , 253, 419-432	21.8	94
86	Insights into the oxidation of organic contaminants by iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell: Catalyzed Fenton-like reaction at natural pH. <i>Environment International</i> , 2019 , 128, 77-88	12.9	48
85	N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation. <i>Water Research</i> , 2019 , 159, 77-86	12.5	175
84	Self-assembly of 3D MnO2/N-doped graphene hybrid aerogel for catalytic degradation of water pollutants: Structure-dependent activity. <i>Chemical Engineering Journal</i> , 2019 , 369, 1049-1058	14.7	53
83	Magnetic biochar catalysts from anaerobic digested sludge: Production, application and environment impact. <i>Environment International</i> , 2019 , 126, 302-308	12.9	51
82	Novel applications of perovskite oxide via catalytic peroxymonosulfate advanced oxidation in aqueous systems for trace L-cysteine detection. <i>Journal of Colloid and Interface Science</i> , 2019 , 545, 311-3	39:8	10
81	Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting. <i>Carbon</i> , 2019 , 148, 540-549	10.4	34
80	Zn phthalocyanine/carbon nitride heterojunction for visible light photoelectrocatalytic conversion of CO2 to methanol. <i>Journal of Catalysis</i> , 2019 , 371, 214-223	7-3	30
79	Metal-free catalytic ozonation on surface-engineered graphene: Microwave reduction and heteroatom doping. <i>Chemical Engineering Journal</i> , 2019 , 355, 118-129	14.7	49
78	Enhanced light-driven water splitting by fast electron transfer in 2D/2D reduced graphene oxide/tungsten trioxide heterojunction with preferential facets. <i>Journal of Colloid and Interface Science</i> , 2019 , 555, 413-422	9.3	33
77	CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption. <i>Applied Catalysis B: Environmental</i> , 2019 , 259, 118072	21.8	97
76	Facile fabrication of 3D ferrous ion crosslinked graphene oxide hydrogel membranes for excellent water purification. <i>Environmental Science: Nano</i> , 2019 , 6, 3060-3071	7.1	12
75	Photocatalytic conversion of lignocellulosic biomass to valuable products. <i>Green Chemistry</i> , 2019 , 21, 4266-4289	10	93
74	sp2/sp3 Framework from Diamond Nanocrystals: A Key Bridge of Carbonaceous Structure to Carbocatalysis. <i>ACS Catalysis</i> , 2019 , 9, 7494-7519	13.1	50
73	Degradation of Cosmetic Microplastics via Functionalized Carbon Nanosprings. <i>Matter</i> , 2019 , 1, 745-758	312.7	140
72	Role of electronic properties in partition of radical and nonradical processes of carbocatalysis toward peroxymonosulfate activation. <i>Carbon</i> , 2019 , 153, 73-80	10.4	47

71	Activation of Peroxydisulfate on Carbon Nanotubes: Electron-Transfer Mechanism. <i>Environmental Science & Electron Science & Ele</i>	10.3	203
70	Boosting performance of lanthanide magnetism perovskite for advanced oxidation through lattice doping with catalytically inert element. <i>Chemical Engineering Journal</i> , 2019 , 355, 721-730	14.7	78
69	Facile synthesis of N-doped 3D graphene aerogel and its excellent performance in catalytic degradation of antibiotic contaminants in water. <i>Carbon</i> , 2019 , 144, 781-790	10.4	79
68	Enhanced solar light driven activity of p-n heterojunction for water oxidation induced by deposition of Cu2O on Bi2O3 microplates. <i>Sustainable Materials and Technologies</i> , 2019 , 19, e00088	5.3	4
67	Persulfate Activation on Crystallographic Manganese Oxides: Mechanism of Singlet Oxygen Evolution for Nonradical Selective Degradation of Aqueous Contaminants. <i>Environmental Science & Environmental Science</i>	10.3	408
66	Cobalt silicate hydroxide nanosheets in hierarchical hollow architecture with maximized cobalt active site for catalytic oxidation. <i>Chemical Engineering Journal</i> , 2019 , 359, 79-87	14.7	88
65	Sub-5 nm Ultra-Fine FeP Nanodots as Efficient Co-Catalysts Modified Porous g-CN for Precious-Metal-Free Photocatalytic Hydrogen Evolution under Visible Light. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 5651-5660	9.5	162
64	Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants. <i>Chemical Engineering Journal</i> , 2019 , 362, 251-261	14.7	89
63	Z-scheme plasmonic Ag decorated WO3/Bi2WO6 hybrids for enhanced photocatalytic abatement of chlorinated-VOCs under solar light irradiation. <i>Applied Catalysis B: Environmental</i> , 2019 , 242, 76-84	21.8	179
62	Metal-Free Carbocatalysis in Advanced Oxidation Reactions. <i>Accounts of Chemical Research</i> , 2018 , 51, 678-687	24.3	573
61	0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2018 , 228, 64-74	21.8	220
60	Nanostructured Co-Mn containing perovskites for degradation of pollutants: Insight into the activity and stability. <i>Journal of Hazardous Materials</i> , 2018 , 349, 177-185	12.8	66
59	Identification and Regulation of Active Sites on Nanodiamonds: Establishing a Highly Efficient Catalytic System for Oxidation of Organic Contaminants. <i>Advanced Functional Materials</i> , 2018 , 28, 17052	2 5 56	238
58	Tailored synthesis of active reduced graphene oxides from waste graphite: Structural defects and pollutant-dependent reactive radicals in aqueous organics decontamination. <i>Applied Catalysis B: Environmental</i> , 2018 , 229, 71-80	21.8	77
57	Enhanced CO2 Adsorption and Selectivity of CO2/N2 on Amino-MIL-53(Al) Synthesized by Polar Co-solvents. <i>Energy & Dolar</i> 2018, 32, 4502-4510	4.1	25
56	Crystal transformation of 2D tungstic acid HWO to WO for enhanced photocatalytic water oxidation. <i>Journal of Colloid and Interface Science</i> , 2018 , 514, 576-583	9.3	33
55	Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes. <i>Catalysis Today</i> , 2018 , 307, 140-146	5.3	91
54	Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: Core-shell layer dependence. <i>Applied Catalysis B: Environmental</i> , 2018 , 222, 176-181	21.8	157

53	Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. <i>Applied Catalysis B: Environmental</i> , 2018 , 220, 626-634	21.8	274
52	Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability. <i>Chemical Engineering Journal</i> , 2018 , 332, 398-408	14.7	141
51	Catalytic Removal of Aqueous Contaminants on N-Doped Graphitic Biochars: Inherent Roles of Adsorption and Nonradical Mechanisms. <i>Environmental Science & Environmental Scienc</i>	10.3	460
50	Degradation of aniline by electrochemical activation of peroxydisulfate at MWCNT cathode: The proofed concept of nonradical oxidation process. <i>Chemosphere</i> , 2018 , 206, 432-438	8.4	48
49	Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: Integrated experimental and theoretical investigations for mechanism and application. <i>Chemical Engineering Journal</i> , 2018 , 354, 507-516	14.7	102
48	Nonradical reactions in environmental remediation processes: Uncertainty and challenges. <i>Applied Catalysis B: Environmental</i> , 2018 , 224, 973-982	21.8	397
47	Temperature-dependent evolution of hydroxyl radicals from peroxymonosulfate activation over nitrogen-modified carbon nanotubes. <i>Sustainable Materials and Technologies</i> , 2018 , 18, e00082	5.3	7
46	Postsynthesis Growth of CoOOH Nanostructure on SrCo0.6Ti0.4O3IPerovskite Surface for Enhanced Degradation of Aqueous Organic Contaminants. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15737-15748	8.3	43
45	Fine-Tuning Surface Properties of Perovskites via Nanocompositing with Inert Oxide toward Developing Superior Catalysts for Advanced Oxidation. <i>Advanced Functional Materials</i> , 2018 , 28, 18046.	5 ⁴ 5.6	44
44	Efficient removal of organic and bacterial pollutants by Ag-LaCaFeO perovskite via catalytic peroxymonosulfate activation. <i>Journal of Hazardous Materials</i> , 2018 , 356, 53-60	12.8	48
43	Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation. <i>Carbon</i> , 2017 , 115, 649-658	10.4	209
42	N-Doped Graphene from Metal©rganic Frameworks for Catalytic Oxidation of p-Hydroxylbenzoic Acid: N-Functionality and Mechanism. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 2693-2701	8.3	152
41	Comment on "Activation of Persulfate by Graphitized Nanodiamonds for Removal of Organic Compounds". <i>Environmental Science & Environmental Science & E</i>	10.3	13
40	Mixed Conducting Perovskite Materials as Superior Catalysts for Fast Aqueous-Phase Advanced Oxidation: A Mechanistic Study. <i>ACS Catalysis</i> , 2017 , 7, 388-397	13.1	186
39	Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a coreBhell structure for visible-light photocatalytic degradation. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 1052-1062	11.3	45
38	Shape-controlled Co3O4 catalysts for advanced oxidation of phenolic contaminants in aqueous solutions. <i>Separation and Purification Technology</i> , 2017 , 186, 213-217	8.3	28
37	Oxygen Vacancies in Shape Controlled CuO/Reduced Graphene Oxide/InO Hybrid for Promoted Photocatalytic Water Oxidation and Degradation of Environmental Pollutants. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 11678-11688	9.5	101
36	An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environmental Science: Nano. 2017, 4, 315-324	7.1	272

(2015-2017)

of Peroxymonosulfate. <i>Catalysts</i> , 2017 , 7, 3	4	6
Disordered Atomic Packing Structure of Metallic Glass: Toward Ultrafast Hydroxyl Radicals Production Rate and Strong Electron Transfer Ability in Catalytic Performance. <i>Advanced Functional Materials</i> , 2017 , 27, 1702258	15.6	118
UV-assisted construction of 3D hierarchical rGO/Bi2MoO6 composites for enhanced photocatalytic water oxidation. <i>Chemical Engineering Journal</i> , 2017 , 313, 1447-1453	14.7	88
Heterogeneous activation of peroxymonosulfate by amorphous boron for degradation of bisphenol S. <i>Journal of Hazardous Materials</i> , 2017 , 322, 532-539	12.8	160
Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. <i>Applied Catalysis B: Environmental</i> , 2017 , 200, 47-55	21.8	234
Three-Dimensional BiOI/BiOX (X = Cl or Br) Nanohybrids for Enhanced Visible-Light Photocatalytic Activity. <i>Nanomaterials</i> , 2017 , 7,	5.4	37
Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation. <i>Carbon</i> , 2016 , 107, 371-	317884	219
Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. <i>Applied Catalysis B: Environmental</i> , 2016 , 188, 98-105	21.8	386
Nitrogen- and Sulfur-Codoped Hierarchically Porous Carbon for Adsorptive and Oxidative Removal of Pharmaceutical Contaminants. <i>ACS Applied Materials & District Removal</i> 8, 7184-93	9.5	162
Carbocatalytic activation of persulfate for removal of antibiotics in water solutions. <i>Chemical Engineering Journal</i> , 2016 , 288, 399-405	14.7	135
Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations. <i>Applied Catalysis B: Environmental</i> , 2016 , 198, 295-302	21.8	192
Size-Tailored Porous Spheres of Manganese Oxides for Catalytic Oxidation via Peroxymonosulfate Activation. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 16871-16878	3.8	52
Ultra-sustainable FeSiB metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light. <i>Scientific Reports</i> , 2016 , 6, 38520	4.9	60
Surface-tailored nanodiamonds as excellent metal-free catalysts for organic oxidation. <i>Carbon</i> , 2016 , 103, 404-411	10.4	127
Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. <i>Applied Catalysis B: Environmental</i> , 2016 , 194, 7-15	21.8	277
A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol. <i>Applied Catalysis B: Environmental</i> , 2015 , 172-173, 73-81	21.8	198
Metal-free graphene-carbon nitride hybrids for photodegradation of organic pollutants in water. <i>Catalysis Today</i> , 2015 , 258, 668-675	5.3	58
Nanocarbons in different structural dimensions (0BD) for phenol adsorption and metal-free catalytic oxidation. <i>Applied Catalysis B: Environmental</i> , 2015 , 179, 352-362	21.8	220
	Disordered Atomic Packing Structure of Metallic Class: Toward Ultrafast Hydroxyl Radicals Production Rate and Strong Electron Transfer Ability in Catalytic Performance. Advanced Functional Materials, 2017, 27, 1702258 UV-assisted construction of 3D hierarchical rCO/Bi2MoO6 composites for enhanced photocatalytic water oxidation. Chemical Engineering Journal, 2017, 313, 1447-1453 Heterogeneous activation of peroxymonosulfate by amorphous boron for degradation of bisphenol S. Journal of Hazardous Materials, 2017, 322, 532-539 Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Applied Catalysis B: Environmental, 2017, 200, 47-55 Three-Dimensional BiOI/BiOX (X = Cl or Br) Nanohybrids for Enhanced Visible-Light Photocatalytic Activity. Nanomaterials, 2017, 7, Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation. Carbon, 2016, 107, 371- Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Applied Catalysis B: Environmental, 2016, 188, 98-105 Nitrogen- and Sulfur-Codoped Hierarchically Porous Carbon for Adsorptive and Oxidative Removal of Pharmaceutical Contaminants. ACS Applied Materials & Interfaces, 2016, 8, 7184-93 Carbocatalytic activation of persulfate for removal of antibiotics in water solutions. Chemical Engineering Journal, 2016, 288, 399-405 Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations. Applied Catalysis B: Environmental, 2016, 198, 295-302 Size-Tailored Porous Spheres of Manganese Oxides for Catalytic Oxidation via Peroxymonosulfate Activation. Journal of Physical Chemistry C, 2016, 120, 16871-16878 Ultra-sustainable FeSiB metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light. Scientific Reports, 2016, 194, 7-15 A new magnetic nano zero-valent iron encapsulated in carbon spheres	Disordered Atomic Packing Structure of Metallic Glass: Toward Ultrafast Hydroxyl Radicals Production Rate and Strong Electron Transfer Ability in Catalytic Performance. Advanced Functional Materials, 2017, 21, 1702258 UV-assisted construction of 3D hierarchical rGO/Bi2MoO6 composites for enhanced photocatalytic water oxidation. Chemical Engineering Journal, 2017, 313, 1447-1453 1447 Heterogeneous activation of peroxymonosulfate by amorphous boron for degradation of bisphenol S. Journal of Hazordous Materials, 2017, 32, 532-539 Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Applied Catalysis B: Environmental, 2017, 20, 47-55 Three-Dimensional BiOl/BiOX (X = Cl or Br) Nanohybrids for Enhanced Visible-Light Photocatalytic Activity. Nanomaterials, 2017, 7, Unwelling the active sites of graphene-catalyzed peroxymonosulfate activation. Carbon, 2016, 107, 371-3/R84 Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Applied Catalysis B: Environmental, 2016, 188, 98-105 Nitrogen- and Sulfur-Codoped Hierarchically Porous Carbon for Adsorptive and Oxidative Removal of Pharmaceutical Contaminants. ACS Applied Materials Bamp; Interfaces, 2016, 8, 7184-93 Grarbocatalytic activation of persulfate for removal of antibiotics in water solutions. Chemical Engineering Journal, 2016, 288, 399-405 Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations. Applied Catalysis B: Environmental, 2016, 198, 295-302 21.8 Size-Tailored Porous Spheres of Manganese Oxides for Catalytic Oxidation via Peroxymonosulfate Activation. Journal of Physical Chemistry C, 2016, 120, 16871-16878 Ultra-sustainable FeSiB metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light. Scientific Reports, 2016, 6, 38520 Surface-tailored nanoadiamonds as excellent metal-f

17	Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons. <i>ACS Catalysis</i> , 2015 , 5, 4629-4636	13.1	450
16	Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions. <i>Small</i> , 2015 , 11, 3036-44	11	412
15	Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study. <i>Chemical Communications</i> , 2015 , 51, 15249-52	5.8	195
14	N-Doping-Induced Nonradical Reaction on Single-Walled Carbon Nanotubes for Catalytic Phenol Oxidation. <i>ACS Catalysis</i> , 2015 , 5, 553-559	13.1	525
13	Effects of nitrogen-, boron-, and phosphorus-doping or codoping on metal-free graphene catalysis. <i>Catalysis Today</i> , 2015 , 249, 184-191	5.3	123
12	Novel polyoxometalate@g-CNIhybrid photocatalysts for degradation of dyes and phenolics. <i>Journal of Colloid and Interface Science</i> , 2015 , 456, 15-21	9.3	63
11	Catalysis: Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions (Small 25/2015). <i>Small</i> , 2015 , 11, 3035-3035	11	
10	Photochemical degradation of phenol solutions on Co3O4 nanorods with sulfate radicals. <i>Catalysis Today</i> , 2015 , 258, 576-584	5.3	64
9	Low temperature combustion synthesis of nitrogen-doped graphene for metal-free catalytic oxidation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3432-3440	13	156
8	Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis. <i>ACS Applied Materials & Damp; Interfaces</i> , 2015 , 7, 4169-78	9.5	47 ¹
7	New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional \(\text{MnO2}\) nanostructures. Chemical Engineering Journal, 2015 , 266, 12-20	14.7	165
6	Roles of Catalyst Structure and Gas Surface Reaction in the Generation of Hydroxyl Radicals for Photocatalytic Oxidation. <i>ACS Catalysis</i> ,2770-2780	13.1	3
5	Degradation of Microplastics by a Thermal Fenton Reaction. ACS ES&T Engineering,		6
4	van der Waals type II carbon nitride homojunctions for visible light photocatalytic hydrogen evolution. <i>Nano Research</i> ,1	10	4
3	Intrinsic Mechanisms of Morphological Engineering and Carbon Doping for Improved Photocatalysis of 2D/2D Carbon Nitride Van Der Waals Heterojunction. <i>Energy and Environmental Materials</i> ,	13	1
2	Functional Carbon Nitride Materials in Photo-Fenton-Like Catalysis for Environmental Remediation. <i>Advanced Functional Materials</i> ,2201743	15.6	8
1	Biorenewable Nanocomposite Materials for Wastewater Treatment. ACS Symposium Series, 281-311	0.4	