Xiaozhuo Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2219921/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Small-Molecule Inhibitor of Glucose Transporter 1 Downregulates Glycolysis, Induces Cell-Cycle Arrest, and Inhibits Cancer Cell Growth <i>In Vitro</i> and <i>In Vivo</i> . Molecular Cancer Therapeutics, 2012, 11, 1672-1682.	4.1	439
2	Drug resistance and combating drug resistance in cancer. Cancer Drug Resistance (Alhambra, Calif), 2019, 2, 141-160.	2.1	388
3	Tannic Acid Stimulates Glucose Transport and Inhibits Adipocyte Differentiation in 3T3-L1 Cells. Journal of Nutrition, 2005, 135, 165-171.	2.9	162
4	The Warburg effect: Evolving interpretations of an established concept. Free Radical Biology and Medicine, 2015, 79, 253-263.	2.9	161
5	Antidiabetes and Anti-Obesity Activity ofLagerstroemia speciosa. Evidence-based Complementary and Alternative Medicine, 2007, 4, 401-407.	1.2	151
6	An Extract of Lagerstroemia speciosa L. Has Insulin-Like Glucose Uptake–Stimulatory and Adipocyte Differentiation–Inhibitory Activities in 3T3-L1 Cells. Journal of Nutrition, 2001, 131, 2242-2247.	2.9	140
7	Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells. Cancer Letters, 2014, 351, 242-251.	7.2	118
8	Dipeptide seryl-histidine and related oligopeptides cleave DNA, protein, and a carboxyl ester. Bioorganic and Medicinal Chemistry, 2000, 8, 2675-2680.	3.0	100
9	Active Compounds from <i>Lagerstroemia speciosa</i> , Insulin-like Glucose Uptake-Stimulatory/Inhibitory and Adipocyte Differentiation-Inhibitory Activities in 3T3-L1 Cells. Journal of Agricultural and Food Chemistry, 2008, 56, 11668-11674.	5.2	96
10	Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-d-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway. Biochemical and Biophysical Research Communications, 2005, 336, 430-437.	2.1	94
11	Extracellular ATP a New Player in Cancer Metabolism: NSCLC Cells Internalize ATP <i>In Vitro</i> and <i>In Vivo</i> Using Multiple Endocytic Mechanisms. Molecular Cancer Research, 2016, 14, 1087-1096.	3.4	81
12	Synthesis and Structureâ ´'Activity Relationship Study of Antidiabetic Penta-O-galloyl-d-glucopyranose and Its Analogues. Journal of Medicinal Chemistry, 2006, 49, 2829-2837.	6.4	75
13	Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like mechanisms. Cancer Letters, 2010, 298, 176-185.	7.2	66
14	Extracellular ATP, as an energy and phosphorylating molecule, induces different types of drug resistances in cancer cells through ATP internalization and intracellular ATP level increase. Oncotarget, 2017, 8, 87860-87877.	1.8	64
15	Extracellular and macropinocytosis internalized ATP work together to induce epithelial–mesenchymal transition and other early metastatic activities in lung cancer. Cancer Cell International, 2019, 19, 254.	4.1	64
16	Transcription regulation of the vegf gene by the BMP/Smad pathway in the angioblast of zebrafish embryos. Biochemical and Biophysical Research Communications, 2005, 329, 324-330.	2.1	60
17	Novel inhibitors of basal glucose transport as potential anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2191-2194.	2.2	57
18	Iridoids from <i>Fraxinus excelsior</i> with Adipocyte Differentiation-Inhibitory and PPARα Activation Activity. Journal of Natural Products, 2010, 73, 2-6.	3.0	55

XIAOZHUO CHEN

#	Article	IF	CITATIONS
19	Regulation of G1 Arrest and Apoptosis in Hypoxia by PERK and GCN2-Mediated eIF2α Phosphorylation. Neoplasia, 2010, 12, 61-IN6.	5.3	53
20	Cardiac Glycoside Constituents of <i>Streblus asper</i> with Potential Antineoplastic Activity. Journal of Natural Products, 2017, 80, 648-658.	3.0	49
21	Biological and biomedical functions of Penta-O-galloyl-d-glucose and its derivatives. Journal of Natural Medicines, 2014, 68, 465-472.	2.3	43
22	Oxime-based inhibitors of glucose transporter 1 displaying antiproliferative effects in cancer cells. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6923-6927.	2.2	42
23	Constituents of an Extract of <i>Cryptocarya rubra</i> Housed in a Repository with Cytotoxic and Glucose Transport Inhibitory Effects. Journal of Natural Products, 2014, 77, 550-556.	3.0	37
24	Variable Efficiency of the Thymidine Kinase/Ganciclovir System in Human Glioblastoma Cell Lines: Implications for Gene Therapy. Human Gene Therapy, 1997, 8, 1945-1953.	2.7	36
25	A self-initiating eukaryotic transient gene expression system based on cotransfection of bacteriophage T7 RNA polymerase and DNA vectors containing a T7 autogene. Nucleic Acids Research, 1994, 22, 2114-2120.	14.5	31
26	Cancer Gene Therapy by Direct Tumor Injections of a Nonviral T7 Vector Encoding a Thymidine Kinase Gene. Human Gene Therapy, 1998, 9, 729-736.	2.7	26
27	Na ⁺ /K ⁺ -ATPase-Targeted Cytotoxicity of (+)-Digoxin and Several Semisynthetic Derivatives. Journal of Natural Products, 2020, 83, 638-648.	3.0	23
28	A small-molecule pan-class I glucose transporter inhibitor reduces cancer cell proliferation in vitro and tumor growth in vivo by targeting glucose-based metabolism. Cancer & Metabolism, 2021, 9, 14.	5.0	22
29	Discovery, Structural Determination and Anticancer Activities of Lactucinlike Guaianolides. Letters in Drug Design and Discovery, 2005, 2, 444-450.	0.7	20
30	Salicylketoximes That Target Glucose Transporterâ€1 Restrict Energy Supply to Lung Cancer Cells. ChemMedChem, 2015, 10, 1892-1900.	3.2	19
31	Distribution, Bioactivities and Therapeutical Potentials of Pentagalloylglucopyranose. Current Bioactive Compounds, 2007, 3, 81-89.	0.5	18
32	Orally efficacious novel small molecule 6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-α-d-glucopyranose selectively and potently stimulates insulin receptor and alleviates diabetes. Journal of Molecular Endocrinology, 2013, 51, 15-26.	2.5	18
33	Insulin receptor signaling activated by penta-O-galloyl-α-d-glucopyranose induces p53 and apoptosis in cancer cells. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 902-913.	4.9	16
34	Synthesis and Antitumor Activity of Ellagic Acid Peracetate. ACS Medicinal Chemistry Letters, 2012, 3, 631-636.	2.8	16
35	Seryl-histidine as an alternative DNA nicking agent in nick translation yields superior DNA probes and hybridizations. Bioorganic and Medicinal Chemistry, 2002, 10, 667-673.	3.0	15
36	Plantâ€derived glucose transport inhibitors with potential antitumor activity. Phytotherapy Research, 2020, 34, 1027-1040.	5.8	15

XIAOZHUO CHEN

#	Article	IF	CITATIONS
37	Cytotoxic and non-cytotoxic cardiac glycosides isolated from the combined flowers, leaves, and twigs of Streblus asper. Bioorganic and Medicinal Chemistry, 2020, 28, 115301.	3.0	14
38	A Novel Small Molecule 1,2,3,4,6-penta-O-galloyl-α-D-glucopyranose Mimics the Antiplatelet Actions of Insulin. PLoS ONE, 2011, 6, e26238.	2.5	13
39	The anti-diabetic effect of eight <i>Lagerstroemia speciosa</i> leaf extracts based on the contents of ellagitannins and ellagic acid derivatives. Food and Function, 2020, 11, 1560-1571.	4.6	10
40	Cancer stem cells, epithelial-mesenchymal transition, ATP and their roles in drug resistance in cancer. , 2021, 4, 684-709.		9
41	Expression of the Na+/Ca2+ Exchanger Ameliorates Ionomycin-Induced Cell Death. Biochemical and Biophysical Research Communications, 2000, 276, 93-96.	2.1	5
42	Novel 1,5-diphenyl-6-substituted 1H-pyrazolo[3,4- <i>d</i>]pyrimidin-4(5 <i>H</i>)-ones induced apoptosis in RKO colon cancer cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1286-1299.	5.2	5
43	Parameters Influencing the Efficiency of the Thymidine Kinase/Ganciclovir Strategy in Human Glioblastoma Cell Lines. Stereotactic and Functional Neurosurgery, 1997, 68, 252-257.	1.5	3
44	From Transcriptomics, Metabolomics to Functional Studies: Extracellular ATP Induces TGF-β-Like Epithelial Mesenchymal Transition in Lung Cancer Cells. Frontiers in Oncology, 0, 12, .	2.8	3
45	Isosteres of ester derived glucose uptake inhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127406.	2.2	2
46	Natural Compound α-PGG and Its Synthetic Derivative 6Cl-TGQ Alter Insulin Secretion: Evidence for Diminishing Glucose Uptake as a Mechanism. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 759-772.	2.4	2
47	Fluorescence Microscopy for ATP Internalization Mediated by Macropinocytosis in Human Tumor Cells and Tumor-xenografted Mice. Journal of Visualized Experiments, 2021, , .	0.3	2
48	Extracellular ATP and Macropinocytosis: Their Interactive and Mutually Supportive Roles in Cell Growth, Drug Resistance, and EMT in Cancer. Sub-Cellular Biochemistry, 2022, 98, 61-83.	2.4	1