Chirag Deb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2219516/publications.pdf

Version: 2024-02-01

26 1,911 18 26 papers citations h-index g-index

27 27 27 2008 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A review on time series forecasting techniques for building energy consumption. Renewable and Sustainable Energy Reviews, 2017, 74, 902-924.	8.2	585
2	Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique. Energy and Buildings, 2016, 126, 94-103.	3.1	219
3	Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks. Energy and Buildings, 2016, 121, 284-297.	3.1	212
4	k-Shape clustering algorithm for building energy usage patterns analysis and forecasting model accuracy improvement. Energy and Buildings, 2017, 146, 27-37.	3.1	143
5	Review of data-driven energy modelling techniques for building retrofit. Renewable and Sustainable Energy Reviews, 2021, 144, 110990.	8.2	85
6	Determining key variables influencing energy consumption in office buildings through cluster analysis of pre- and post-retrofit building data. Energy and Buildings, 2018, 159, 228-245.	3.1	84
7	PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings. Energy, 2014, 71, 588-595.	4.5	75
8	Evaluation of thermal comfort in a rail terminal location in India. Building and Environment, 2010, 45, 2571-2580.	3.0	62
9	Using artificial neural networks to assess HVAC related energy saving in retrofitted office buildings. Solar Energy, 2018, 163, 32-44.	2.9	62
10	Unsupervised learning of energy signatures to identify the heating system and building type using smart meter data. Applied Energy, 2020, 264, 114715.	5.1	57
11	Do energy performance certificates allow reliable predictions of actual energy consumption and savings? Learning from the Swiss national database. Energy and Buildings, 2020, 224, 110235.	3.1	50
12	Energy performance model development and occupancy number identification of institutional buildings. Energy and Buildings, 2016, 123, 192-204.	3.1	36
13	A simplified tool for building layout design based on thermal comfort simulations. Frontiers of Architectural Research, 2017, 6, 218-230.	1.3	34
14	Wireless sensor network for estimating building performance. Automation in Construction, 2020, 111, 103043.	4.8	32
15	Occupancy-based energy consumption modelling using machine learning algorithms for institutional buildings. Energy and Buildings, 2021, 252, 111478.	3.1	31
16	Forecasting Energy Consumption of Institutional Buildings in Singapore. Procedia Engineering, 2015, 121, 1734-1740.	1.2	25
17	Automated load disaggregation for residences with electrical resistance heating. Energy and Buildings, 2019, 182, 61-74.	3.1	24
18	A machine learning-based framework for cost-optimal building retrofit. Applied Energy, 2021, 294, 116990.	5.1	19

#	Article	IF	CITATIONS
19	Measuring the heat transfer coefficient (HTC) in buildings: A stakeholder's survey. Renewable and Sustainable Energy Reviews, 2021, 144, 111008.	8.2	18
20	Early-stage design support combining machine learning and building information modelling. Automation in Construction, 2022, 136, 104147.	4.8	17
21	A simple technique to classify urban locations with respect to human thermal comfort: Proposing the HXG scale. Building and Environment, 2011, 46, 1321-1328.	3.0	10
22	Cost-optimal retrofit analysis for residential buildings. Journal of Physics: Conference Series, 2019, 1343, 012030.	0.3	9
23	Identifying temporal properties of building components and indoor environment for building performance assessment. Building and Environment, 2020, 168, 106506.	3.0	9
24	Model Development and Comparison for the Evaluation of the Energy Performance of Three Tertiary Institutional Buildings in Singapore. Procedia Engineering, 2015, 121, 1133-1143.	1.2	7
25	Building Energy Performance Assessment Using an Easily Deployable Sensor Kit: Process, Risks, and Lessons Learned. Frontiers in Built Environment, 2021, 6, .	1.2	5
26	Impact of Measurement Uncertainty on Building Modeling and Retrofitting Decisions. Frontiers in Built Environment, 2021, 7, .	1.2	1