Frédéric Martinon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2219417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of virus-specific cytotoxic T lymphocytesin vivo by liposome-entrapped mRNA. European Journal of Immunology, 1993, 23, 1719-1722.	1.6	373
2	Paradoxical Effect of Chloroquine Treatment in Enhancing Chikungunya Virus Infection. Viruses, 2018, 10, 268.	1.5	126
3	Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. Journal of Controlled Release, 2006, 112, 175-185.	4.8	117
4	Physical association between MHC class I molecules and immunogenic peptides. Nature, 1989, 339, 473-475.	13.7	93
5	Cells expressing a major histocompatibility complex class I molecule with a single covalently bound peptide are highly immunogenic Journal of Experimental Medicine, 1995, 181, 493-502.	4.2	67
6	Optimize Prime/Boost Vaccine Strategies: Trained Immunity as a New Player in the Game. Frontiers in Immunology, 2021, 12, 612747.	2.2	62
7	Analysis of physical interactions between peptides and HLA molecules and application to the detection of human immunodeficiency virus 1 antigenic peptides Journal of Experimental Medicine, 1990, 172, 889-899.	4.2	56
8	Comparative efficiency of simple lipopeptide constructs for in vivo induction of virus-specific CTL. Vaccine, 1996, 14, 375-382.	1.7	55
9	Mhc haplotype H6 is associated with sustained control of SIVmac251 infection in Mauritian cynomolgus macaques. Immunogenetics, 2009, 61, 327-339.	1.2	53
10	Long-lasting anti-viral cytotoxic T lymphocytes induced in vivo with chimeric-multirestricted lipopeptides. Vaccine, 1995, 13, 1339-1345.	1.7	52
11	Electroporation as a vaccine delivery system and a natural adjuvant to intradermal administration of plasmid DNA in macaques. Scientific Reports, 2017, 7, 4122.	1.6	49
12	Persistent Immune Responses Induced by a Human Immunodeficiency Virus DNA Vaccine Delivered in Association with Electroporation in the Skin of Nonhuman Primates. Human Gene Therapy, 2009, 20, 1291-1307.	1.4	48
13	Persistent alterations in T-cell repertoire, cytokine and chemokine receptor gene expression after 1 year of highly active antiretroviral therapy. Aids, 1999, 13, 185-194.	1.0	47
14	Macrophage- and Neutrophil-Derived TNF-α Instructs Skin Langerhans Cells To Prime Antiviral Immune Responses. Journal of Immunology, 2014, 193, 2416-2426.	0.4	43
15	Vaccine Inoculation Route Modulates Early Immunity and Consequently Antigen-Specific Immune Response. Frontiers in Immunology, 2021, 12, 645210.	2.2	38
16	Prime and Boost Vaccination Elicit a Distinct Innate Myeloid Cell Immune Response. Scientific Reports, 2018, 8, 3087.	1.6	35
17	T cell receptor selection by and recognition of two class I major histocompatibility complex-restricted antigenic peptides that differ at a single position Journal of Experimental Medicine, 1993, 177, 811-820.	4.2	33
18	Prevention of vaginal simian immunodeficiency virus transmission in macaques by postexposure prophylaxis with zidovudine, lamivudine and indinavir. Aids, 2009, 23, 447-454.	1.0	26

#	Article	IF	CITATIONS
19	Innate and secondary humoral responses are improved by increasing the time between MVA vaccine immunizations. Npj Vaccines, 2020, 5, 24.	2.9	24
20	Pimelautide or Trimexautide as Built-in Adjuvants Associated with an HIV-1-Derived Peptide: Synthesis and in Vivo Induction of Antibody and Virus-Specific Cytotoxic T-Lymphocyte-Mediated Response. Journal of Medicinal Chemistry, 1995, 38, 459-465.	2.9	23
21	CCR5 or CXCR4 use influences the relationship between CD4 cell depletion, NKp44L expression and NK cytotoxicity in SHIV-infected macaques. Aids, 2008, 22, 185-192.	1.0	22
22	<scp>CD</scp> 34â€derived dendritic cells transfected ex vivo with <scp>HIV</scp> â€ <scp>G</scp> ag m <scp>RNA</scp> induce polyfunctional <scp>T</scp> â€cell responses in nonhuman primates. European Journal of Immunology, 2012, 42, 2019-2030.	1.6	20
23	NK cell immune responses differ after prime and boost vaccination. Journal of Leukocyte Biology, 2019, 105, 1055-1073.	1.5	20
24	Delivering HIV Gagp24 to DCIR Induces Strong Antibody Responses In Vivo. PLoS ONE, 2015, 10, e0135513.	1.1	20
25	In vitro human cytotoxic T cell responses against influenza A virus can be induced and selected by synthetic peptides. European Journal of Immunology, 1990, 20, 2171-2176.	1.6	19
26	Improved protection against simian immunodeficiency virus mucosal challenge in macaques primed with a DNA vaccine and boosted with the recombinant modified vaccinia virus Ankara and recombinant Semliki Forest virus. Vaccine, 2008, 26, 532-545.	1.7	18
27	Intradermal injection of an anti‣angerinâ€HIVGag fusion vaccine targets epidermal Langerhans cells in nonhuman primates and can be tracked in vivo. European Journal of Immunology, 2016, 46, 689-700.	1.6	17
28	Non-human primate models of human respiratory infections. Molecular Immunology, 2021, 135, 147-164.	1.0	17
29	Identification of skin immune cells in non-human primates. Journal of Immunological Methods, 2015, 426, 42-49.	0.6	15
30	DNA Vaccination of Macaques with Several Different Nef Sequences Induces Multispecific T Cell Responses. Virology, 2001, 279, 136-145.	1.1	13
31	Cynomolgus macaques immunized with two HIV-1 Tat stabilized proteins raise strong and long-lasting immune responses with a pattern of Th1/Th2 response differing from that in mice. Vaccine, 2009, 27, 5349-5356.	1.7	12
32	Single-Stranded Nucleic Acids Regulate TLR3/4/7 Activation through Interference with Clathrin-Mediated Endocytosis. Scientific Reports, 2018, 8, 15841.	1.6	12
33	The CBD1 peptide corresponding to the caveolin-1 binding domain of HIV-1 glycoprotein gp41 elicits neutralizing antibodies in cynomolgus macaques when administered with the tetanus T helper epitope. Molecular Immunology, 2009, 46, 705-712.	1.0	11
34	Innate Molecular and Cellular Signature in the Skin Preceding Long-Lasting T Cell Responses after Electroporated DNA Vaccination. Journal of Immunology, 2020, 204, 3375-3388.	0.4	11
35	Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques. Vaccines, 2013, 1, 305-327.	2.1	10
36	Sublingual Priming with a HIV gp41-Based Subunit Vaccine Elicits Mucosal Antibodies and Persistent B Memory Responses in Non-Human Primates. Frontiers in Immunology, 2017, 8, 63.	2.2	10

#	Article	IF	CITATIONS
37	HIV specific responses induced in nonhuman primates with ANRS HIV-Lipo-5 vaccine combined with rMVA-HIV prime or boost immunizations. Vaccine, 2015, 33, 2354-2359.	1.7	8
38	Molecular and Cellular Dynamics in the Skin, the Lymph Nodes, and the Blood of the Immune Response to Intradermal Injection of Modified Vaccinia Ankara Vaccine. Frontiers in Immunology, 2018, 9, 870.	2.2	7
39	Adjuvant Is Required When Using Env Lipopeptide Construct to Induce HIV Type 1-Specific Neutralizing Antibody Responses in Micein Vivo. AIDS Research and Human Retroviruses, 1998, 14, 901-909.	0.5	6
40	Electroporation-Mediated Intradermal Delivery of DNA Vaccines in Nonhuman Primates. Methods in Molecular Biology, 2014, 1121, 309-313.	0.4	5
41	T-cell Receptor Vβ Repertoire in Nodal Non-Anaplastic Peripheral T-cell Lymphomas. Pathology Research and Practice, 2002, 198, 389-395.	1.0	3
42	The Route of Vaccine Administration Determines Whether Blood Neutrophils Undergo Long-Term Phenotypic Modifications. Frontiers in Immunology, 2021, 12, 784813.	2.2	3
43	OA05-03. Efficacy study of a T-cell-based DNA vaccine delivered by intradermal electrotransfer in macaques. Retrovirology, 2009, 6, .	0.9	1
44	P19-26. Directing macaque immune responses with an anti-dendritic cell HIV Gag p24 fusion protein vaccine. Retrovirology, 2009, 6, .	0.9	1
45	P11-15. Induction of a mucosal immune response to HIV after systemic immunization with poly(lactic) Tj ETQq1	1 0.78431	4 rgBT /Ov <mark>e</mark> r
46	P18-08. Characterization of CD34+ derived dendritic cells generated in vitro and transfected with HIV gene as potential therapeutic vaccine in macaque. Retrovirology, 2009, 6, .	0.9	0
47	P17-11. HIV DNA vaccine delivery in association with electroporation in the skin of nonhuman primates. Retrovirology, 2009, 6, .	0.9	0
48	P17-10. A new AuxoGTU-HIV B DNA vaccine induce very long lasting HIV specific T cells response which is efficiently boosted with HIV LAI lipopeptides. Retrovirology, 2009, 6, .	0.9	0
49	P17-16. Anti-Langerin-HIV Gag p24 fusion protein targeting Langerhans cells as a new anti-HIV vaccine strategy. Retrovirology, 2009, 6, .	0.9	0
50	Targeting HIV Gag p24 to DICR on dendritic cells induces T cell and potent and long-lasting antibody responses in non-human primates. Retrovirology, 2012, 9, .	0.9	0
51	TLR-3 and TLR-7/8 ligands indirectly activate Langerhans cells when intradermally injected by triggering the recruitment of inflammatory cells. Retrovirology, 2012, 9, .	0.9	0
52	Intradermal Vaccination against SIV Induces the Activation and Migration of Langerhans Cells in Non-human Primates. AIDS Research and Human Retroviruses, 2014, 30, A194-A194.	0.5	0