Sunil K. Panchal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/221935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable food systems. , 2022, , 15-46.		0
2	Tropical fruits from Australia as potential treatments for metabolic syndrome. Current Opinion in Pharmacology, 2022, 63, 102182.	1.7	8
3	Exploring the diets of mothers and their partners during pregnancy: Findings from the Queensland Family Cohort pilot study. Nutrition and Dietetics, 2022, 79, 602-615.	0.9	9
4	Reduced Abundance of Nitrate-Reducing Bacteria in the Oral Microbiota of Women with Future Preeclampsia. Nutrients, 2022, 14, 1139.	1.7	6
5	Impact of Food-Based Weight Loss Interventions on Gut Microbiome in Individuals with Obesity: A Systematic Review. Nutrients, 2022, 14, 1953.	1.7	9
6	Anthocyanins in Chronic Diseases: The Power of Purple. Nutrients, 2022, 14, 2161.	1.7	22
7	The influence of wasabi on the gut microbiota of high-carbohydrate, high-fat diet-induced hypertensive Wistar rats. Journal of Human Hypertension, 2021, 35, 170-180.	1.0	17
8	Rind from Purple Mangosteen (Garcinia mangostana) Attenuates Diet-Induced Physiological and Metabolic Changes in Obese Rats. Nutrients, 2021, 13, 319.	1.7	13
9	Pregnant women who develop preeclampsia have lower abundance of the butyrate-producer Coprococcus in their gut microbiota. Pregnancy Hypertension, 2021, 23, 211-219.	0.6	42
10	Capillary Triglycerides in Late Pregnancy—Challenging to Measure, Hard to Interpret: A Cohort Study of Practicality. Nutrients, 2021, 13, 1266.	1.7	1
11	Probiotics for preventing gestational diabetes. The Cochrane Library, 2021, 2021, CD009951.	1.5	28
12	Brown Seaweed Sargassum siliquosum as an Intervention for Diet-Induced Obesity in Male Wistar Rats. Nutrients, 2021, 13, 1754.	1.7	11
13	Maternal gut microbiota displays minor changes in overweight and obese women with GDM. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 2131-2139.	1.1	8
14	Increasing pregnancy duration, fetal and early postnatal growth in LMIC: The importance of a gut microbiome that exploits dietary staples. EBioMedicine, 2021, 69, 103449.	2.7	0
15	Addressing the Insufficient Availability of EPA and DHA to Meet Current and Future Nutritional Demands. Nutrients, 2021, 13, 2855.	1.7	9
16	Ketones in Pregnancy: Why Is It Considered Necessary to Avoid Them and What Is the Evidence Behind Their Perceived Risk?. Diabetes Care, 2021, 44, 280-289.	4.3	16
17	Consumption of a Low Carbohydrate Diet in Overweight or Obese Pregnant Women Is Associated with Longer Gestation of Pregnancy. Nutrients, 2021, 13, 3511.	1.7	0
18	Coffee Pulp, a By-Product of Coffee Production, Modulates Gut Microbiota and Improves Metabolic Syndrome in High-Carbohydrate, High-Fat Diet-Fed Rats. Pathogens, 2021, 10, 1369.	1.2	16

#	Article	IF	CITATIONS
19	Nannochloropsis oceanica as a Microalgal Food Intervention in Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2021, 13, 3991.	1.7	16
20	Pelargonidin 3-glucoside-enriched strawberry attenuates symptoms of DSS-induced inflammatory bowel disease and diet-induced metabolic syndrome in rats. European Journal of Nutrition, 2020, 59, 2905-2918.	1.8	24
21	Physiological and Metabolic Effects of Yellow Mangosteen (Garcinia dulcis) Rind in Rats with Diet-Induced Metabolic Syndrome. International Journal of Molecular Sciences, 2020, 21, 272.	1.8	27
22	Pregnancy and diet-related changes in the maternal gut microbiota following exposure to an elevated linoleic acid diet. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E276-E285.	1.8	10
23	The Gut Microbiota and Inflammation: An Overview. International Journal of Environmental Research and Public Health, 2020, 17, 7618.	1.2	296
24	Tropical foods as functional foods for metabolic syndrome. Food and Function, 2020, 11, 6946-6960.	2.1	15
25	Reply to: Pelargonidin and its glycosides as dietary chemopreventives attenuating inflammatory bowel disease symptoms through the aryl hydrocarbon receptor. European Journal of Nutrition, 2020, 59, 3865-3866.	1.8	Ο
26	DNA Methylation in Adipose Tissue and Metabolic Syndrome. Journal of Clinical Medicine, 2020, 9, 2699.	1.0	5
27	Altered Gut Microbiota Composition Is Associated With Back Pain in Overweight and Obese Individuals. Frontiers in Endocrinology, 2020, 11, 605.	1.5	39
28	Dietary Fiber Intake Alters Gut Microbiota Composition but Does Not Improve Gut Wall Barrier Function in Women with Future Hypertensive Disorders of Pregnancy. Nutrients, 2020, 12, 3862.	1.7	12
29	Caulerpa lentillifera (Sea Grapes) Improves Cardiovascular and Metabolic Health of Rats with Diet-Induced Metabolic Syndrome. Metabolites, 2020, 10, 500.	1.3	20
30	Carrageenans from the Red Seaweed Sarconema filiforme Attenuate Symptoms of Diet-Induced Metabolic Syndrome in Rats. Marine Drugs, 2020, 18, 97.	2.2	45
31	Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats. Nutrients, 2020, 12, 509.	1.7	12
32	Wasabi supplementation alters the composition of the gut microbiota of diet-induced obese rats. Journal of Functional Foods, 2020, 67, 103868.	1.6	13
33	Modulation of gut microbiota by spent coffee grounds attenuates dietâ€induced metabolic syndrome in rats. FASEB Journal, 2020, 34, 4783-4797.	0.2	24
34	Saskatoon Berry Amelanchier alnifolia Regulates Glucose Metabolism and Improves Cardiovascular and Liver Signs of Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2020, 12, 931.	1.7	15
35	Self-reported periconception weight loss attempts do not alter infant body composition. Nutrition, 2020, 77, 110781.	1.1	1
36	Anti-inflammatory Components from Functional Foods for Obesity. , 2020, , 285-303.		0

3

#	Article	IF	CITATIONS
37	Tropical Seaweeds Improve Cardiovascular and Metabolic Health of Diet-Induced Obese and Hypertensive Rats. , 2020, 61, .		0
38	Ketonuria Is Associated with Changes to the Abundance of Roseburia in the Gut Microbiota of Overweight and Obese Women at 16 Weeks Gestation: A Cross-Sectional Observational Study. Nutrients, 2019, 11, 1836.	1.7	14
39	Low-Dose Curcumin Nanoparticles Normalise Blood Pressure in Male Wistar Rats with Diet-Induced Metabolic Syndrome. Nutrients, 2019, 11, 1542.	1.7	25
40	Linseed Components Are More Effective Than Whole Linseed in Reversing Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2019, 11, 1677.	1.7	11
41	Cholesterol versus Inflammation as Cause of Chronic Diseases. Nutrients, 2019, 11, 2332.	1.7	18
42	Probiotics for the Prevention of Gestational Diabetes Mellitus in Overweight and Obese Women: Findings From the SPRING Double-Blind Randomized Controlled Trial. Diabetes Care, 2019, 42, 364-371.	4.3	125
43	Faecal Microbiota Are Related to Insulin Sensitivity and Secretion in Overweight or Obese Adults. Journal of Clinical Medicine, 2019, 8, 452.	1.0	68
44	Green coffee ameliorates components of diet-induced metabolic syndrome in rats. Journal of Functional Foods, 2019, 57, 141-149.	1.6	21
45	Cyanidin 3-glucoside from Queen Garnet plums and purple carrots attenuates DSS-induced inflammatory bowel disease in rats. Journal of Functional Foods, 2019, 56, 194-203.	1.6	13
46	The edible native Australian fruit, Davidson's plum (Davidsonia pruriens), reduces symptoms in rats with diet-induced metabolic syndrome. Journal of Functional Foods, 2019, 56, 204-215.	1.6	23
47	Decaffeinated green coffee extract improves cardiovascular function in diet-induced obese rats. Obesity Research and Clinical Practice, 2019, 13, 71.	0.8	0
48	Effect of Vitamin D Supplementation on Faecal Microbiota: A Randomised Clinical Trial. Nutrients, 2019, 11, 2888.	1.7	58
49	Chlorogenic acid attenuates high-carbohydrate, high-fat diet–induced cardiovascular, liver, and metabolic changes in rats. Nutrition Research, 2019, 62, 78-88.	1.3	94
50	Knights in Shining Armor. Circulation Research, 2019, 124, 12-14.	2.0	4
51	An improved rat model for chronic inflammatory bowel disease. Pharmacological Reports, 2019, 71, 149-155.	1.5	16
52	Nutraceuticals in rodent models as potential treatments for human Inflammatory Bowel Disease. Pharmacological Research, 2018, 132, 99-107.	3.1	23
53	The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets. Molecular and Cellular Endocrinology, 2018, 472, 57-67.	1.6	72
54	Triacylglycerol‣owering Effect of Docosahexaenoic Acid Is Not Influenced by Singleâ€Nucleotide Polymorphisms Involved in Lipid Metabolism in Humans. Lipids, 2018, 53, 897-908.	0.7	6

#	Article	IF	CITATIONS
55	Placental mitochondrial adaptations in preeclampsia associated with progression to term delivery. Cell Death and Disease, 2018, 9, 1150.	2.7	63
56	Achacha (Garcinia humilis) Rind Improves Cardiovascular Function in Rats with Diet-Induced Metabolic Syndrome. Nutrients, 2018, 10, 1425.	1.7	18
57	Transient receptor potential (TRP) channels: a metabolic TR(i)P to obesity prevention and therapy. Obesity Reviews, 2018, 19, 1269-1292.	3.1	24
58	Iron supplementation has minor effects on gut microbiota composition in overweight and obese women in early pregnancy. British Journal of Nutrition, 2018, 120, 283-289.	1.2	20
59	Capsaicin in Metabolic Syndrome. Nutrients, 2018, 10, 630.	1.7	105
60	A Vegetarian Diet Is a Major Determinant of Gut Microbiota Composition in Early Pregnancy. Nutrients, 2018, 10, 890.	1.7	82
61	Attenuation of Metabolic Syndrome by EPA/DHA Ethyl Esters in Testosterone-Deficient Obese Rats. Marine Drugs, 2018, 16, 182.	2.2	7
62	Review: Is rapid fat accumulation in early life associated with adverse later health outcomes?. Placenta, 2017, 54, 125-130.	0.7	14
63	Review: Alterations in placental glycogen deposition in complicated pregnancies: Current preclinical and clinical evidence. Placenta, 2017, 54, 52-58.	0.7	58
64	Selenium, Vanadium, and Chromium as Micronutrients to Improve Metabolic Syndrome. Current Hypertension Reports, 2017, 19, 10.	1.5	79
65	Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Scientific Reports, 2017, 7, 46457.	1.6	71
66	Review: Maternal health and the placental microbiome. Placenta, 2017, 54, 30-37.	0.7	129
67	Review: Placental mitochondrial function and structure in gestational disorders. Placenta, 2017, 54, 2-9.	0.7	151
68	Coconut Products Improve Signs of Diet-Induced Metabolic Syndrome in Rats. Plant Foods for Human Nutrition, 2017, 72, 418-424.	1.4	15
69	Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2017, 9, 1261.	1.7	50
70	Obesity-associated metabolic syndrome spontaneously induces infiltration of pro-inflammatory macrophage in synovium and promotes osteoarthritis. PLoS ONE, 2017, 12, e0183693.	1.1	69
71	Successful vaginal delivery following spontaneous adrenal haemorrhage at term. BMJ Case Reports, 2016, 2016, bcr2016215096.	0.2	1
72	Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism. Journal of Thyroid Research, 2016, 2016, 1-14.	0.5	11

#	Article	IF	CITATIONS
73	Connections Between the Gut Microbiome and Metabolic Hormones in Early Pregnancy in Overweight and Obese Women. Diabetes, 2016, 65, 2214-2223.	0.3	223
74	Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy. Hypertension, 2016, 68, 974-981.	1.3	293
75	Linseed as a Functional Food for the Management of Obesity. , 2016, , 173-187.		2
76	The rat placental renin-angiotensin system - a gestational gene expression study. Reproductive Biology and Endocrinology, 2015, 13, 89.	1.4	15
77	Functional foods as potential therapeutic options for metabolic syndrome. Obesity Reviews, 2015, 16, 914-941.	3.1	127
78	Gestation Related Gene Expression of the Endocannabinoid Pathway in Rat Placenta. Mediators of Inflammation, 2015, 2015, 1-9.	1.4	11
79	Exercise in pregnancy does not alter gestational weight gain, <scp>MCP</scp> â€1 or leptin in obese women. Australian and New Zealand Journal of Obstetrics and Gynaecology, 2015, 55, 27-33.	0.4	33
80	Modulation of tissue fatty acids by <scp>l</scp> -carnitine attenuates metabolic syndrome in diet-induced obese rats. Food and Function, 2015, 6, 2496-2506.	2.1	19
81	Placental fibroblast growth factor 21 is not altered in late-onset preeclampsia. Reproductive Biology and Endocrinology, 2015, 13, 14.	1.4	11
82	Cyanidin 3-glucoside improves diet-induced metabolic syndrome in rats. Pharmacological Research, 2015, 102, 208-217.	3.1	59
83	Periconception Weight Loss: Common Sense for Mothers, but What about for Babies?. Journal of Obesity, 2014, 2014, 1-10.	1.1	17
84	Increased Placental Expression of Fibroblast Growth Factor 21 in Gestational Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E591-E598.	1.8	39
85	Placental Lipases in Pregnancies Complicated by Gestational Diabetes Mellitus (GDM). PLoS ONE, 2014, 9, e104826.	1.1	33
86	Cardioprotective and hepatoprotective effects of ellagitannins from European oak bark (Quercus) Tj ETQq0 0 0	rgBT /Ove 1.8	rlock_10 Tf 50
87	Food as Medicine ¹ . Canadian Journal of Physiology and Pharmacology, 2013, 91, v-vi.	0.7	1
88	Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. European Journal of Nutrition, 2013, 52, 559-568.	1.8	133
89	Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Journal of Nutritional Biochemistry, 2013, 24, 1041-1052.	1.9	131
90	Maternal high-fat diet alters expression of pathways of growth, blood supply and arachidonic acid in	0.7	7

rat placenta. Journal of Nutritional Science, 2013, 2, e41.

#	Article	IF	CITATIONS
91	The Effect of Gestational Age on Angiogenic Gene Expression in the Rat Placenta. PLoS ONE, 2013, 8, e83762.	1.1	14
92	Chronic high-carbohydrate, high-fat feeding in rats induces reversible metabolic, cardiovascular, and liver changes. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1472-E1482.	1.8	57
93	Coffee Extract Attenuates Changes in Cardiovascular and Hepatic Structure and Function without Decreasing Obesity in High-Carbohydrate, High-Fat Diet-Fed Male Rats. Journal of Nutrition, 2012, 142, 690-697.	1.3	89
94	A fifteen-year retrospective review of obstetric patients requiring critical care. Obstetric Medicine, 2012, 5, 166-170.	0.5	4
95	Caffeine attenuates metabolic syndrome in diet-induced obese rats. Nutrition, 2012, 28, 1055-1062.	1.1	75
96	Quercetin Ameliorates Cardiovascular, Hepatic, and Metabolic Changes in Diet-Induced Metabolic Syndrome in Rats. Journal of Nutrition, 2012, 142, 1026-1032.	1.3	209
97	Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. Journal of Nutritional Biochemistry, 2012, 23, 153-162.	1.9	142
98	Omega-3 fatty acids and metabolic syndrome: Effects and emerging mechanisms of action. Progress in Lipid Research, 2011, 50, 372-387.	5.3	304
99	High-carbohydrate High-fat Diet–induced Metabolic Syndrome and Cardiovascular Remodeling in Rats. Journal of Cardiovascular Pharmacology, 2011, 57, 51-64.	0.8	348
100	Overweight and obesity knowledge prior to pregnancy: a survey study. BMC Pregnancy and Childbirth, 2011, 11, 96.	0.9	33
101	High-carbohydrate, High-fat Diet–induced Metabolic Syndrome and Cardiovascular Remodeling in Rats: Erratum. Journal of Cardiovascular Pharmacology, 2011, 57, 610.	0.8	128
102	Rodent Models for Metabolic Syndrome Research. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-14.	3.0	281
103	Rutin Attenuates Metabolic Changes, Nonalcoholic Steatohepatitis, and Cardiovascular Remodeling in High-Carbohydrate, High-Fat Diet-Fed Rats. Journal of Nutrition, 2011, 141, 1062-1069.	1.3	136
104	Comparison of purple carrot juice and β-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome. British Journal of Nutrition, 2010, 104, 1322-1332.	1.2	113