Nor Azwadi Bin Che Sidik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2219306/publications.pdf

Version: 2024-02-01

249 papers

7,291 citations

50 h-index 64668 79 g-index

250 all docs

250 docs citations

250 times ranked

5103 citing authors

#	Article	IF	CITATIONS
1	Improved thermo-physical properties and energy efficiency of hybrid PCM/graphene-silver nanocomposite in a hybrid CPV/thermal solar system. Journal of Thermal Analysis and Calorimetry, 2022, 147, 1125-1142.	2.0	25
2	Hybrid nanocoolant for enhanced heat transfer performance in vehicle cooling system. International Communications in Heat and Mass Transfer, 2022, 133, 105922.	2.9	6
3	Recent progress on the application of nanofluids and hybrid nanofluids in machining: a comprehensive review. International Journal of Advanced Manufacturing Technology, 2022, 121, 1455-1481.	1.5	21
4	Experimental investigation and optimization of loop heat pipe performance with nanofluids. Journal of Thermal Analysis and Calorimetry, 2021, 144, 1435-1449.	2.0	9
5	Nanofluids for flat plate solar collectors: Fundamentals and applications. Journal of Cleaner Production, 2021, 291, 125725.	4.6	47
6	Industry 4.0: Challenges of Mechanical Engineering for Society and Industry. Mechanical Engineering for Society and Industry, 2021, 1, 3-6.	1.4	12
7	Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. International Communications in Heat and Mass Transfer, 2020, 110, 104389.	2.9	165
8	Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites. Journal of Energy Storage, 2020, 27, 101115.	3.9	113
9	Review on numerical simulations for nano-enhanced phase change material (NEPCM) phase change process. Journal of Thermal Analysis and Calorimetry, 2020, 141, 669-684.	2.0	11
10	Revisiting tin melting for phase change model verification. IOP Conference Series: Earth and Environmental Science, 2020, 463, 012123.	0.2	0
11	Effect of surfactants on thermal conductivity of graphene based hybrid nanofluid. IOP Conference Series: Earth and Environmental Science, 2020, 463, 012122.	0.2	4
12	Thermal Performance Analysis in Sinusoidal-Cavities-Ribs Microchannel Heat Sink with Secondary Channel Geometry for Low Pumping Power Application. IOP Conference Series: Materials Science and Engineering, 2020, 884, 012087.	0.3	2
13	Wake behind a Compound Wing in Ground Effect. Journal of Marine Science and Engineering, 2020, 8, 156.	1.2	7
14	Experimental investigation on stability, thermal conductivity and rheological properties of rGO/ethylene glycol based nanofluids. International Journal of Heat and Mass Transfer, 2020, 150, 118981.	2.5	59
15	Numerical investigation on melting of various nanoparticles enhanced phase change material inside a square enclosure. IOP Conference Series: Earth and Environmental Science, 2020, 463, 012128.	0.2	2
16	A review on preparation of nanocellulose for new green working fluid in heat transfer application. IOP Conference Series: Earth and Environmental Science, 2020, 463, 012133.	0.2	1
17	A comprehensive review of the influences of nanoparticles as a fuel additive in an internal combustion engine (ICE). Nanotechnology Reviews, 2020, 9, 1326-1349.	2.6	41
18	Experimental Assessment of a Novel Eutectic Binary Molten Salt-based Hexagonal Boron Nitride Nanocomposite as a Promising PCM with Enhanced Specific Heat Capacity. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2020, 68, 73-85.	0.3	27

#	Article	IF	CITATIONS
19	Optimization of Thermal Conductivity of NanoPCM-Based Graphene by Response Surface Methodology. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2020, 75, 108-125.	0.3	21
20	The Effect of Triangular Cavity Shape on the Hybrid Microchannel Heat Sink Performance. CFD Letters, 2020, 12, 1-14.	0.4	4
21	A review of passive methods in microchannel heat sink application through advanced geometric structure and nanofluids: Current advancements and challenges. Nanotechnology Reviews, 2020, 9, 1192-1216.	2.6	34
22	Uncertainty of Temperature measured by Thermocouple. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2020, 68, 54-62.	0.3	7
23	Investigation of Newtonian and Power-Law Blood Flow Models in a $180 {\hat{\sf A}}^{\circ}$ Curved Pipe at Low to Medium Shear Rate. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2020, 69, 148-162.	0.3	2
24	Recent state of nanofluid in automobile cooling systems. Journal of Thermal Analysis and Calorimetry, 2019, 135, 981-1008.	2.0	66
25	Graphene nanoplatelets and few-layer graphene studies in thermo-physical properties and particle characterization. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1081-1093.	2.0	30
26	Excellent Properties of Dimer Fatty Acid Esters as Biolubricant Produced by Catalyst―and Solventâ€Free Esterification. European Journal of Lipid Science and Technology, 2019, 121, 1900228.	1.0	10
27	Delfim-Soares explicit time marching method for modelling of ultrasonic wave in microalgae pre-treatment. IOP Conference Series: Earth and Environmental Science, 2019, 268, 012106.	0.2	2
28	Energy equation of swirling flow in a cylindrical container. International Communications in Heat and Mass Transfer, 2019, 108, 104288.	2.9	O
29	Thermal efficiency of a flat-plate solar collector filled with Pentaethylene Glycol-Treated Graphene Nanoplatelets: An experimental analysis. Solar Energy, 2019, 191, 360-370.	2.9	44
30	Numerical investigation on melting of Phase Change Material (PCM) dispersed with various nanoparticles inside a square enclosure. IOP Conference Series: Materials Science and Engineering, 2019, 469, 012034.	0.3	3
31	Biolubricant production from palm stearin through enzymatic transesterification method. Biochemical Engineering Journal, 2019, 148, 178-184.	1.8	59
32	Significance of alumina in nanofluid technology. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1107-1126.	2.0	55
33	Numerical analysis of irreversible processes in a piston-cylinder system using LB1S turbulence model. International Journal of Heat and Mass Transfer, 2019, 136, 730-739.	2.5	3
34	Numerical analysis on thermal and hydraulic performance of diverging-converging minichannel heat sink using Al2O3-H2O nanofluid. IOP Conference Series: Materials Science and Engineering, 2019, 469, 012O46.	0.3	5
35	Erosion-corrosion effect of nanocoolant on actual car water pump. IOP Conference Series: Materials Science and Engineering, 2019, 469, 012039.	0.3	3
36	Natural convection heat transfer of nanofluid inside a cavity containing rough elements using lattice Boltzmann method. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 3659-3684.	1.6	17

#	Article	IF	Citations
37	Thermophysical properties and stability of carbon nanostructures and metallic oxides nanofluids. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1545-1562.	2.0	33
38	Study on friction and wear of Cellulose Nanocrystal (CNC) nanoparticle as lubricating additive in engine oil. International Journal of Heat and Mass Transfer, 2019, 131, 1196-1204.	2.5	79
39	Recent progress on concentrating direct absorption solar collector using nanofluids. Journal of Thermal Analysis and Calorimetry, 2019, 137, 903-922.	2.0	46
40	An experimental study on characterization and properties of nano lubricant containing Cellulose Nanocrystal (CNC). International Journal of Heat and Mass Transfer, 2019, 130, 1163-1169.	2.5	39
41	A Detailed Study of Row-Trenched Holes at the Combustor Exit on Film-Cooling Effectiveness. Mechanics and Mechanical Engineering, 2019, 23, 246-252.	0.2	O
42	Effect of Nozzle Angle, Size and Pressure on Spray Distribution based on Laboratory Conditions. International Journal of Engineering and Advanced Technology, 2019, 9, 2522-2525.	0.2	O
43	Performance enhancement of cold thermal energy storage system using nanofluid phase change materials: A review. International Communications in Heat and Mass Transfer, 2018, 94, 85-95.	2.9	65
44	Effects of different water percentages in non-surfactant emulsion fuel on performance and exhaust emissions of a light-duty truck. Journal of Cleaner Production, 2018, 179, 559-566.	4.6	43
45	Numerical analysis for irreversible processes in a piston-cylinder system. International Journal of Heat and Mass Transfer, 2018, 124, 1097-1106.	2.5	4
46	Outflow velocity for SIMPLE algorithm for unsteady forced convection flows with variable density. International Communications in Heat and Mass Transfer, 2018, 92, 73-77.	2.9	2
47	Alcohol and ether as alternative fuels in spark ignition engine: A review. Renewable and Sustainable Energy Reviews, 2018, 82, 2586-2605.	8.2	215
48	Numerical predictions of laminar and turbulent forced convection: Lattice Boltzmann simulations using parallel libraries. International Journal of Heat and Mass Transfer, 2018, 116, 715-724.	2.5	13
49	Lattice Boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks. International Journal of Heat and Mass Transfer, 2018, 117, 425-435.	2.5	66
50	Thermal conductivity and viscosity models of metallic oxides nanofluids. International Journal of Heat and Mass Transfer, 2018, 116, 1314-1325.	2.5	185
51	Experimental study on the effect of perforations shapes on vertical heated fins performance under forced convection heat transfer. International Journal of Heat and Mass Transfer, 2018, 118, 832-846.	2.5	68
52	Emulsifier-free Water-in-Diesel emulsion fuel: Its stability behaviour, engine performance and exhaust emission. Fuel, 2018, 215, 454-462.	3.4	95
53	Experimental investigation of conduction and convection heat transfer properties of a novel nanofluid based on carbon quantum dots. International Communications in Heat and Mass Transfer, 2018, 90, 85-92.	2.9	24
54	Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2018, 117, 1291-1303.	2.5	114

#	Article	IF	Citations
55	A comprehensive study on heat transfer enhancement in microchannel heat sink with secondary channel. International Communications in Heat and Mass Transfer, 2018, 99, 62-81.	2.9	87
56	Flat electroencephalography's cluster centers movement tracking during epileptic seizure. AIP Conference Proceedings, 2018, , .	0.3	0
57	Nano-additives incorporated water in diesel emulsion fuel: Fuel properties, performance and emission characteristics assessment. Energy Conversion and Management, 2018, 169, 291-314.	4.4	86
58	Thermal analysis of cellulose nanocrystal-ethylene glycol nanofluid coolant. International Journal of Heat and Mass Transfer, 2018, 127, 173-181.	2.5	23
59	Ground boundary layers effect on aerodynamic coefficients of a compound wing with respect to design parameters. Ocean Engineering, 2018, 164, 228-237.	1.9	5
60	Combustion performance and exhaust emissions fuelled with non-surfactant water-in-diesel emulsion fuel made from different water sources. Environmental Science and Pollution Research, 2018, 25, 24266-24280.	2.7	8
61	Solar Radiation Forecast Using Cloud Velocity for Photovoltaic Systems. Journal of Engineering and Technological Sciences, 2018, 50, 479-492.	0.3	1
62	Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs. International Journal of Heat and Mass Transfer, 2017, 108, 1969-1981.	2. 5	179
63	Experimental investigation and development of new correlations for heat transfer enhancement and friction factor of BioGlycol/water based TiO2 nanofluids in flat tubes. International Journal of Heat and Mass Transfer, 2017, 108, 1026-1035.	2.5	48
64	An experimental investigation on the effect of Al2O3/distilled water nanofluid on the energy efficiency of evacuated tube solar collector. International Journal of Heat and Mass Transfer, 2017, 108, 972-987.	2.5	112
65	The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends. Renewable and Sustainable Energy Reviews, 2017, 73, 307-331.	8.2	101
66	Heat transfer augmentation in concentric elliptic annular by ethylene glycol based nanofluids. International Communications in Heat and Mass Transfer, 2017, 82, 29-39.	2.9	25
67	A review on the use of carbon nanotubes nanofluid for energy harvesting system. International Journal of Heat and Mass Transfer, 2017, 111, 782-794.	2.5	63
68	Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine. Energy, 2017, 131, 289-296.	4. 5	27
69	Performance of copper oxide/distilled water nanofluid in evacuated tube solar collector (ETSC) water heater with internal coil under thermosyphon system circulations. Applied Thermal Engineering, 2017, 121, 520-536.	3.0	98
70	Recent development on biodegradable nanolubricant: A review. International Communications in Heat and Mass Transfer, 2017, 86, 159-165.	2.9	54
71	Heat and mass transfer characteristics of carbon nanotube nanofluids: A review. Renewable and Sustainable Energy Reviews, 2017, 80, 914-941.	8.2	92
72	The effect of manifold zone parameters on hydrothermal performance of micro-channel HeatSink: A review. International Journal of Heat and Mass Transfer, 2017, 109, 1143-1161.	2.5	59

#	Article	IF	Citations
7 3	Recent progress on the application of nanofluids in minimum quantity lubrication machining: A review. International Journal of Heat and Mass Transfer, 2017, 108, 79-89.	2.5	135
74	An overview of passive techniques for heat transfer augmentation in microchannel heat sink. International Communications in Heat and Mass Transfer, 2017, 88, 74-83.	2.9	150
7 5	Factors affecting the performance of hybrid nanofluids: A comprehensive review. International Journal of Heat and Mass Transfer, 2017, 115, 630-646.	2.5	128
76	A review on preparation methods, stability and applications of hybrid nanofluids. Renewable and Sustainable Energy Reviews, 2017, 80, 1112-1122.	8.2	267
77	Numerical simulation of fluid flow and heat transfer in rotating channels using parallel lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2017, 115, 158-168.	2.5	11
78	An overview of current status of cutting fluids and cooling techniques of turning hard steel. International Journal of Heat and Mass Transfer, 2017, 114, 380-394.	2.5	116
79	Heat transfer enhancement in microchannel heat sink using hybrid technique of ribs and secondary channels. International Journal of Heat and Mass Transfer, 2017, 114, 640-655.	2.5	107
80	Hydrothermal performance of microchannel heat sink: The effect of channel design. International Journal of Heat and Mass Transfer, 2017, 107, 21-44.	2.5	136
81	Simulation of natural convection and entropy generation of non-Newtonian nanofluid in an inclined cavity using Buongiorno's mathematical model (Part II, entropy generation). Powder Technology, 2017, 305, 679-703.	2.1	65
82	Recent advancement of nanofluids in engine cooling system. Renewable and Sustainable Energy Reviews, 2017, 75, 137-144.	8.2	68
83	A DETAILED STUDY OF EFFECTS OF ROW TRENCHED HOLES AT THE COMBUSTOR EXIT ON FILM COOLING EFFECTIVENESS. Journal of the Serbian Society for Computational Mechanics, 2017, 11, 59-68.	0.2	O
84	EXPERIMENTAL AND NUMERICAL INVESTIGATION OF HEAT TRANSFER AUGMENTATION USING AL ₂ O ₃ -ETHYLENE GLYCOL NANOFLUIDS UNDER TURBULENT FLOWS IN A FLAT TUBE. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	0
85	Assessment of Outdoor Thermal Comfort and Wind Characteristics at Three Different Locations in Peninsular Malaysia. MATEC Web of Conferences, 2016, 47, 04005.	0.1	6
86	Influence of micro-pits on sliding motion under low speeds for block-on-disk tribotester. Particulate Science and Technology, 2016, 34, 754-763.	1.1	4
87	The effects of nanolubricants on boiling and two phase flow phenomena: A review. International Communications in Heat and Mass Transfer, 2016, 75, 197-205.	2.9	11
88	Experimental study on thermal performance of MWCNT nanocoolant in Perodua Kelisa 1000cc radiator system. International Communications in Heat and Mass Transfer, 2016, 76, 156-161.	2.9	54
89	Micro Combined Heat and Power to provide heat and electrical power using biomass and Gamma-type Stirling engine. Applied Thermal Engineering, 2016, 103, 1460-1469.	3.0	50
90	Thermal performance enhancement of flat-plate and evacuated tube solar collectors using nanofluid: A review. International Communications in Heat and Mass Transfer, 2016, 76, 6-15.	2.9	91

#	Article	IF	CITATIONS
91	A review on why researchers apply external magnetic field on nanofluids. International Communications in Heat and Mass Transfer, 2016, 78, 60-67.	2.9	103
92	Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review. International Communications in Heat and Mass Transfer, 2016, 78, 68-79.	2.9	313
93	A review of the impact of preparation on stability of carbon nanotube nanofluids. International Communications in Heat and Mass Transfer, 2016, 78, 253-263.	2.9	63
94	An overview of boundary implementation in lattice Boltzmann method for computational heat and mass transfer. International Communications in Heat and Mass Transfer, 2016, 78, 1-12.	2.9	40
95	An experimental determination of thermal conductivity and viscosity of BioGlycol/water based TiO2 nanofluids. International Communications in Heat and Mass Transfer, 2016, 77, 22-32.	2.9	74
96	Experimental investigation and development of new correlation for thermal conductivity and viscosity of BioGlycol/water based SiO2 nanofluids. International Communications in Heat and Mass Transfer, 2016, 77, 54-63.	2.9	47
97	Experimental investigation of combustion, emissions and thermal balance of secondary butyl alcohol-gasoline blends in a spark ignition engine. Energy Conversion and Management, 2016, 123, 1-14.	4.4	50
98	Design Parametric Study of a Compound Wing-in-Ground Effect. I: Aerodynamics Performance. Journal of Aerospace Engineering, 2016, 29, 04015022.	0.8	3
99	Malaysia \times^3 s stand on municipal solid waste conversion to energy: A review. Renewable and Sustainable Energy Reviews, 2016, 58, 1007-1016.	8.2	96
100	Magnetoviscous effect and thermomagnetic convection of magnetic fluid: A review. Renewable and Sustainable Energy Reviews, 2016, 55, 1030-1040.	8.2	63
101	Latest development on computational approaches for nanofluid flow modeling: Navier–Stokes based multiphase models. International Communications in Heat and Mass Transfer, 2016, 74, 114-124.	2.9	36
102	The significant effect of turbulence characteristics on heat transfer enhancement using nanofluids: A comprehensive review. International Communications in Heat and Mass Transfer, 2016, 72, 39-47.	2.9	12
103	Effect of Addition of Tertiary-Butyl Hydroquinone into Palm Oil to Reduce Wear and Friction Using Four-Ball Tribotester. Tribology Transactions, 2016, 59, 883-888.	1.1	28
104	An experimental determination of thermal conductivity and electrical conductivity of bio glycol based Al 2 O 3 nanofluids and development of new correlation. International Communications in Heat and Mass Transfer, 2016, 73, 75-83.	2.9	79
105	Design Parametric Study of a Compound Wing-in-Ground Effect. II: Aerodynamics Coefficients. Journal of Aerospace Engineering, 2016, 29, 04015023.	0.8	2
106	MATERIALS SELECTION FOR HIP PROSTHESIS BY THE METHOD OF WEIGHTED PROPERTIES. Jurnal Teknologi (Sciences and Engineering), 2015, 75, .	0.3	3
107	TURBULENT-FORCED CONVECTIVE HEAT TRANSFER AND PRESSURE DROP ANALYSIS OF FE3O4 MAGNETIC NANOFLUID IN A CIRCULAR MICROCHANNEL. Jurnal Teknologi (Sciences and Engineering), 2015, 75, .	0.3	0
108	PERFORMANCE ANALYSIS OF NANOREFRIGERANTS IN HEATED AND ROTATING CONCENTRIC AND ECCENTRIC ANNULUS CYLINDERS. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.3	4

#	Article	IF	CITATIONS
109	NATURAL CONVECTION OF ALUMINIUM OXIDE-WATER NANOFLUID. Jurnal Teknologi (Sciences and) Tj ETQq1	1 0.78431	4 rgBT /Ove <mark>rlo</mark>
110	A NUMERICAL STUDY OF HEAT TRANSFER TO TURBULENT SEPARATION NANOFLUID FLOW IN AN ANNULAR PASSAGE. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.3	3
111	An investigation of urban boundary layer towards achieving similarity criteria in a short wind tunnel. IOP Conference Series: Materials Science and Engineering, 2015, 100, 012024.	0.3	О
112	Numerical investigation on heat transfer and friction factor characteristics of laminar and turbulent flow in an elliptic annulus utilizing nanofluid. International Communications in Heat and Mass Transfer, 2015, 66, 148-157.	2.9	22
113	Recent progress on lattice Boltzmann simulation of nanofluids: A review. International Communications in Heat and Mass Transfer, 2015, 66, 11-22.	2.9	29
114	Numerical Prediction of Nanofluid Flow in Channel with Heated Cavity. Journal of Computational and Theoretical Nanoscience, 2015, 12, 2442-2447.	0.4	1
115	Assisted and Opposed Mixed Convective Nanofluids Flow Over Vertical Backward Facing Step Having a Baffle. Journal of Computational and Theoretical Nanoscience, 2015, 12, 2048-2061.	0.4	O
116	Measurements and correlations of frictional pressure drop of TiO2/R123 flow boiling inside a horizontal smooth tube. International Communications in Heat and Mass Transfer, 2015, 61, 42-48.	2.9	20
117	Imposition of the no-slip boundary condition via modified equilibrium distribution function in lattice Boltzmann method. International Communications in Heat and Mass Transfer, 2015, 62, 33-36.	2.9	3
118	Forced, natural and mixed-convection heat transfer and fluid flow in annulus: A review. International Communications in Heat and Mass Transfer, 2015, 62, 45-57.	2.9	111
119	The effect of temperature and particles concentration on the determination of thermo and physical properties of SWCNT-nanorefrigerant. International Communications in Heat and Mass Transfer, 2015, 67, 8-13.	2.9	36
120	Formation and Breakup Patterns of Falling Droplets. Numerical Heat Transfer; Part A: Applications, 2015, 68, 1023-1030.	1.2	1
121	Analysis of the Applicability of the Lattice Boltzmann Method in Targeting a Chaotic Flame Front Model. Numerical Heat Transfer; Part A: Applications, 2015, 67, 597-603.	1.2	4
122	Analysis of the Curvature Field of a Density-Driven Convective Flow. Numerical Heat Transfer; Part A: Applications, 2015, 67, 589-596.	1.2	0
123	Experimental and numerical study of thermo-hydraulic performance of circumferentially ribbed tube with Al2O3 nanofluid. International Communications in Heat and Mass Transfer, 2015, 69, 34-40.	2.9	19
124	Nanorefrigerant effects in heat transfer performance and energy consumption reduction: A review. International Communications in Heat and Mass Transfer, 2015, 69, 76-83.	2.9	40
125	Numerical Study of Turbulent Mixed Convection of Nanofluids in Three-Dimensional Horizontal Concentric Annuli. Journal of Computational and Theoretical Nanoscience, 2015, 12, 2067-2076.	0.4	2
126	Applications of nanorefrigerant and nanolubricants in refrigeration, air-conditioning and heat pump systems: A review. International Communications in Heat and Mass Transfer, 2015, 68, 91-97.	2.9	64

#	Article	IF	CITATIONS
127	A review on the application of nanofluids in vehicle engine cooling system. International Communications in Heat and Mass Transfer, 2015, 68, 85-90.	2.9	144
128	Static Stability and Ground Viscous Effect of a Compound Wing Configuration with Respect to Reynolds Number. Advances in Mechanical Engineering, 2015, 6, 685410-685410.	0.8	1
129	NANOFLUIDS HEAT TRANSFER ENHANCEMENT THROUGH STRAIGHT CHANNEL UNDER TURBULENT FLOW. International Journal of Automotive and Mechanical Engineering, 2015, 11, 2294-2305.	0.5	26
130	Reynolds Number–Strouhal Number Relationship for Cylindrical Bluff Body with Variation of Aspect Ratio in High Reynolds Number. Jurnal Teknologi (Sciences and Engineering), 2014, 69, .	0.3	0
131	Aerodynamic Behavior of a Compound Wing Configuration in Ground Effect. Jurnal Teknologi (Sciences and Engineering), 2014, 66, .	0.3	1
132	Film Cooling Effectiveness in a Gas Turbine Engine: A Review. Jurnal Teknologi (Sciences and) Tj ETQq0 0 0 rgBT /	Overlock	10 ₄ Tf 50 542
133	Static Stability of a Compound Wing Configuration in Ground Effect. Jurnal Teknologi (Sciences and) Tj ETQq $1\ 1$	0.784314 0.3	1 rgBT /Overlo
134	Measurement of Film Effectiveness for Cylindrical and Row Trenched Cooling Holes at Different Blowing Ratios. Numerical Heat Transfer; Part A: Applications, 2014, 66, 1154-1171.	1.2	4
135	Experimental Aerodynamic Characteristics of a Compound Wing in Ground Effect. Journal of Fluids Engineering, Transactions of the ASME, 2014, 136, .	0.8	3
136	The Use of Thermal Lattice Boltzmann Numerical Scheme for Particle-Laden Channel Flow with a Cavity. Numerical Heat Transfer; Part A: Applications, 2014, 66, 433-448.	1.2	4
137	Application of the Lattice Boltzmann Method for Fluid Flow around Complex Geometry. Applied Mechanics and Materials, 2014, 554, 230-235.	0.2	0
138	Simulation of Flow over a Cavity Using Multi-Relaxation Time Thermal Lattice Boltzmann Method. Applied Mechanics and Materials, 2014, 554, 296-300.	0.2	1
139	The Effect of Blowing Ratio on Film Cooling Effectiveness Using Cylindrical and Row Trenched Cooling Holes with Alignment Angle of 90 Degrees. Mathematical Problems in Engineering, 2014, 2014, 1-9.	0.6	1
140	A comprehensive review of fundamentals, preparation and applications of nanorefrigerants. International Communications in Heat and Mass Transfer, 2014, 54, 81-95.	2.9	52
141	Eulerian–Lagrangian Numerical Scheme for Contaminant Removal from Different Cavity Shapes. Arabian Journal for Science and Engineering, 2014, 39, 3181-3189.	1.1	2
142	A review on preparation methods and challenges of nanofluids. International Communications in Heat and Mass Transfer, 2014, 54, 115-125.	2.9	228
143	Heat transfer augmentation in the straight channel by using nanofluids. Case Studies in Thermal Engineering, 2014, 3, 59-67.	2.8	31
144	Computational Investigation of Film Cooling from Cylindrical and Row Trenched Cooling Holes near the Combustor End Wall. Applied Mechanics and Materials, 2014, 554, 225-229.	0.2	1

#	Article	IF	CITATIONS
145	Natural convection heat transfer in horizontal concentric annulus between outer cylinder and inner flat tube using nanofluid. International Communications in Heat and Mass Transfer, 2014, 57, 65-71.	2.9	21
146	Influence of particle concentration and temperature on the thermophysical properties of CuO/R134a nanorefrigerant. International Communications in Heat and Mass Transfer, 2014, 58, 79-84.	2.9	49
147	Computational investigation of film cooling from cylindrical and row trenched cooling holes near the combustor endwall. Case Studies in Thermal Engineering, 2014, 4, 76-84.	2.8	2
148	Lattice Boltzmann method for convective heat transfer of nanofluids – A review. Renewable and Sustainable Energy Reviews, 2014, 38, 864-875.	8.2	43
149	Mathematical correlations on factors affecting the thermal conductivity and dynamic viscosity of nanorefrigerants. International Communications in Heat and Mass Transfer, 2014, 58, 125-131.	2.9	23
150	A review on the flow structure and pollutant dispersion in urban street canyons for urban planning strategies. Simulation, 2014, 90, 892-916.	1.1	57
151	Fluid flow and heat transfer characteristics of nanofluids in heat pipes: A review. International Communications in Heat and Mass Transfer, 2014, 56, 50-62.	2.9	78
152	The effect of mixed convection on particle laden flow analysis in a cavity using a Lattice Boltzmann method. Computers and Mathematics With Applications, 2014, 67, 52-61.	1.4	12
153	Ground Viscous Effect on 3D Flow Structure of a Compound Wing-in-Ground Effect. International Journal of Automotive and Mechanical Engineering, 2014, 9, 1550-1563.	0.5	3
154	Four-Sided Lid-Driven Cavity Flow using Time Splitting Method of Adams-Bashforth Scheme. International Journal of Automotive and Mechanical Engineering, 2014, 9, 1501-1510.	0.5	5
155	The Influences of the Die Half Angle of Taper Die During Cold Extrusion Process. Arabian Journal for Science and Engineering, 2013, 38, 1201-1207.	1.1	5
156	A Review on the Application of the Lattice Boltzmann Method for Turbulent Flow Simulation. Numerical Heat Transfer; Part A: Applications, 2013, 64, 938-953.	1.2	65
157	Adaptive-Network-Based Fuzzy Inference System Analysis to Predict the Temperature and Flow Fields in a Lid-Driven Cavity. Numerical Heat Transfer; Part A: Applications, 2013, 63, 906-920.	1.2	40
158	Regularized Lattice Boltzmann Simulation of Laminar Mixed Convection in the Entrance Region of 2-D Channels. Numerical Heat Transfer; Part A: Applications, 2013, 63, 867-878.	1.2	11
159	Thermodynamic analysis of flow field at the end of combustor simulator. International Journal of Heat and Mass Transfer, 2013, 61, 389-396.	2.5	8
160	Simulation of forced convection in a channel with nanofluid by the lattice Boltzmann method. Nanoscale Research Letters, 2013, 8, 178.	3.1	23
161	Numerical Investigation of Natural Convection of Nanofluids in L-Shaped Enclosures. Advanced Materials Research, 2013, 849, 391-396.	0.3	2
162	Hydrodynamical analysis of the effect of fish fins morphology. IOP Conference Series: Materials Science and Engineering, 2013, 50, 012013.	0.3	0

#	Article	IF	CITATIONS
163	A Least-Squares-Based Immersed Boundary Approach for Complex Boundaries in the Lattice Boltzmann Method. Numerical Heat Transfer, Part B: Fundamentals, 2013, 64, 407-419.	0.6	4
164	The use of MRT-lattice Boltzmann method for the prediction of fluid solid flow. IOP Conference Series: Materials Science and Engineering, 2013, 50, 012037.	0.3	1
165	A comparison of cylindrical and row trenched cooling holes with alignment angle of 0 degree near the combustor endwall. IOP Conference Series: Materials Science and Engineering, 2013, 50, 012007.	0.3	О
166	COMPUTATIONAL ANALYSIS OF PARTICULATE FLOW IN EXPANSION CHANNEL. American Journal of Applied Sciences, 2013, 10, 388-394.	0.1	1
167	The effect of different aspect ratio and bottom heat flux towards contaminant removal using numerical analysis. IOP Conference Series: Materials Science and Engineering, 2013, 50, 012015.	0.3	О
168	Numerical prediction of air flow within street canyons based on different two-equationk-lµmodels. IOP Conference Series: Materials Science and Engineering, 2013, 50, 012012.	0.3	2
169	Wear Behavior of Titanium Alloy Lubricated with Palm Olein as Bio-Lubricant Using Pin-On-Disk Tester. Jurnal Teknologi (Sciences and Engineering), 2013, 66, .	0.3	1
170	Computational analysis of heat flow in computer casing. , 2012, , .		1
171	Vortex structure in a two dimensional triangular lid-driven cavity. , 2012, , .		O
172	Analysis of bouyancy-aided convection heat transfer from horizontal cylinder at low Reynolds number. , 2012, , .		0
173	Numerical investigation of flow through porous media using lattice Boltzmann method. , 2012, , .		O
174	Numerical prediction of dynamics of solid particle in lid-driven cavity flow. AIP Conference Proceedings, 2012, , .	0.3	6
175	Preface: The 4th International Meeting of Advances in Thermofluids (IMAT 2011). , 2012, , .		О
176	Cubic interpolation profile Navier-Stokes numerical scheme for particle flow behaviour in triangular lid driven cavity. , 2012, , .		1
177	Free convection in square cavity driven by discrete three source–sink pairs on one sidewall. , 2012, , .		О
178	Computational simulation of flow in stenotic artery using cubic interpolation profile scheme. , 2012, , .		0
179	Numerical analysis of natural convection in porous media using constrained interpolated profile method., 2012,,.		0
180	Numerical investigation of 2D lid driven cavity using smoothed particle hydrodynamics (SPH) method. , 2012, , .		0

#	Article	IF	Citations
181	Particle movement in shear cavity flow for different Stokes number using lattice Boltzmann method., $2012,$		O
182	Simulation of multicomponent multiphase flow using lattice Boltzmann method., 2012,,.		O
183	Numerical Investigation on Aerodynamic Characteristics of a Compound Wing-in-Ground Effect. Journal of Aircraft, 2012, 49, 1297-1305.	1.7	20
184	Mesoscale Numerical Prediction of Fluid Flow in a Shear Driven Cavity. Arabian Journal for Science and Engineering, 2012, 37, 1723-1735.	1,1	7
185	Comments on â€~Lattice Boltzmann simulation of alumina-water nanofluid in a square cavity' by Yurong He, Cong Qi, Yanwei Hu, Bin Qin, Fengchen Li and Yulong Ding. Nanoscale Research Letters, 2012, 7, 648.	3.1	O
186	Finite Difference and Cubic Interpolated Profile Lattice Boltzmann Method for Prediction of Two-Dimensional Lid-Driven Shallow Cavity Flow. Arabian Journal for Science and Engineering, 2012, 37, 1101-1110.	1.1	2
187	The use of cubic interpolation method for transient hydrodynamics of solid particles. International Journal of Engineering Science, 2012, 51, 90-103.	2.7	11
188	Dynamic Analysis of Flow Field at the End of Combustor Simulator. Jurnal Teknologi (Sciences and) Tj ETQq0 0 0	rgBT ₃ /Ove	erlogk 10 Tf 50
189	Simulation of natural convection heat transfer in an enclosure by the lattice-Boltzmann method. Computers and Fluids, 2011, 44, 162-168.	1.3	54
190	Experimental evaluation of palm oil as lubricant in cold forward extrusion process. International Journal of Mechanical Sciences, 2011, 53, 549-555.	3.6	105
191	Mesoscale simulation of natural convection in square cavity driven by discrete two source-sink pairs on one sidewall. , 2011, , .		O
192	Prediction of Supersonic Flow over Compression Corner. Journal of Applied Sciences, 2011, 11, 3397-3404.	0.1	1
193	The Effect of Tool Surface Roughness in Cold Work Extrusion. Journal of Applied Sciences, 2011, 11, 367-372.	0.1	5
194	Numerical Simulation of Natural Convection in an Inclined Square Cavity. Journal of Applied Sciences, 2011, 11, 373-378.	0.1	11
195	Lattice BGK Computational Method for Solving Natural Convection Heat Transfer from a Heated Non-concentric Annulus Cylinder. , 2010 , , .		O
196	Virtual Investigation of Free Convection from Concentric Annulus Cylinder by the Finite Difference Lattice Boltzmann Method., 2010,,.		1
197	STUDY OF PLUME BEHAVIOUR TWO HEATED CYLINDERS AT HIGH RAYLEIGH NUMBER USING LATTICE BOLTZMANN METHOD. AIP Conference Proceedings, 2010, , .	0.3	3
198	Cubic-Interpolated-Pseudo-Particle Lattice Boltzmann Method for Simulation of Natural Convection Heat Transfer in an Enclosure. , $2010, \ldots$		0

#	Article	IF	CITATIONS
199	Study of Flow Behaviour in Triangular Cavity. , 2010, , .		O
200	Simulation of Natural Convection Heat Transfer in an Inclined Square Cavity With Perfectly Conducting Side Walls Using Finite Difference Approach., 2010,,.		0
201	A Study of Transient flow in a lid-driven square cavity. , 2010, , .		O
202	Efficient Mesh for Driven Square Cavity., 2010,,.		0
203	Reduction Of Time Consumption For Simulating Lid-Driven Cavity Flow Using Lattice Boltzmann Method (LBM). , 2010, , .		O
204	Numerical Investigation of Incompressible Fluid Flow through Porous Media in a Lid-Driven Square Cavity. American Journal of Applied Sciences, 2010, 7, 1341-1344.	0.1	9
205	Cubic-Interpolated-Pseudo-Particle lattice Boltzmann method for simulation of natural convection heat transfer in an enclosure with different aspect ratios., 2010,,.		1
206	Mesoscale Computational Approach for Shear Driven Cavity Flow., 2010,,.		0
207	Numerical Study of Droplet Dynamics on Solid Surface. , 2010, , .		1
208	Virtual Study of Natural Convection Heat Transfer in an Inclined Square Cavity. Journal of Applied Sciences, 2010, 10, 331-336.	0.1	11
209	Uncharacteristic Phenomenon in the Nonisothermal Taylor-Couette Flow. , 2009, , .		O
210	Plasticity Analysis of Pure Aluminium Extruded with an RBD Palm Olein Lubricant. Journal of Applied Sciences, 2009, 9, 3581-3586.	0.1	5
211	SIMPLIFIED FINITE DIFFERENCE THERMAL LATTICE BOLTZMANN METHOD. International Journal of Modern Physics B, 2008, 22, 3865-3876.	1.0	19
212	THREE-DIMENSIONAL THERMAL LATTICE BOLTZMANN SIMULATION OF NATURAL CONVECTION IN A CUBIC CAVITY. International Journal of Modern Physics B, 2007, 21, 87-96.	1.0	25
213	SIMPLIFIED THERMAL LATTICE BOLTZMANN IN INCOMPRESSIBLE LIMIT. International Journal of Modern Physics B, 2006, 20, 2437-2449.	1.0	30
214	Accurate Numerical Prediction of Incompressible Fluid Flow in Lid-Driven Cavities. Applied Mechanics and Materials, 0, 110-116, 4365-4372.	0.2	0
215	Cubic-Interpolated-Pseudo-Particle Method to Predict Dynamic Behaviour of Fluid in Shear Driven Cavity. Applied Mechanics and Materials, 0, 110-116, 377-384.	0.2	0
216	Numerical Prediction of Natural Convection Heat Transfer through Porous Media by the Lattice Boltzmann Method. Applied Mechanics and Materials, 0, 110-116, 4439-4444.	0.2	0

#	Article	IF	CITATIONS
217	Simulation of Mixed Convection around a Square by Using LBM. Applied Mechanics and Materials, 0, 229-231, 2145-2149.	0.2	2
218	Thermodynamic Analysis of Flow Field at the End of Combustor Simulator. Applied Mechanics and Materials, 0, 225, 261-266.	0.2	2
219	Numerical Investigation of 2-D Free Convection of Nanofluid in L-Shaped Enclosure. Applied Mechanics and Materials, 0, 315, 433-437.	0.2	O
220	Numerical Prediction of Heat Transfer from Heated Thin Plate in a Square Cavity by Using LBM. Applied Mechanics and Materials, 0, 315, 531-535.	0.2	1
221	Effect of Nozzle Type on Spray Drift in Banding Application. Applied Mechanics and Materials, 0, 465-466, 520-525.	0.2	O
222	Ground Viscous Effect on Aerodynamics of a Compound Wing with Different Reynolds Number. Applied Mechanics and Materials, 0, 465-466, 379-383.	0.2	0
223	Regularized Lattice Boltzmann Simulation of Laminar Natural Convection in Entrance Region of 2D Channels. Applied Mechanics and Materials, 0, 307, 267-270.	0.2	0
224	Prediction of the Flow around a Surface-Mounted Cube Using Two-Equation Turbulence Models. Applied Mechanics and Materials, 0, 315, 438-442.	0.2	3
225	Numerical Prediction of Heat Transfer from Localized Heating in Enclosure Using CIP Method. Applied Mechanics and Materials, 0, 315, 512-516.	0.2	2
226	Numerical Analysis on the Effects of Cavity Geometry with Heat towards Contaminant Removal. Applied Mechanics and Materials, 0, 393, 851-856.	0.2	5
227	Numerical Simulation of High Reynolds Number Flow Structure in a Lid-Driven Cavity Using MRT-LES. Applied Mechanics and Materials, 0, 554, 665-669.	0.2	1
228	Numerical Analysis on the Effects of Mixed Convection of Particles Removal Flow over Heated Cavity Using Multi-Relaxation Time Thermal Lattice Boltzmann Method. Applied Mechanics and Materials, 0, 695, 487-490.	0.2	0
229	Model Sensitivity Test of Large Eddy Simulation for Wind Flow and Pollutant Dispersion in a Street Canyon. Applied Mechanics and Materials, 0, 695, 562-566.	0.2	O
230	Transient Removal of Contaminants in Cavity of Mixed Convection in a Channel by Constrained Interpolated Profile Method. Applied Mechanics and Materials, 0, 554, 312-316.	0.2	2
231	Numerical Simulation of Wind Flow Structures and Pollutant Dispersion within Street Canyon under Thermally Unstable Atmospheric Conditions. Applied Mechanics and Materials, 0, 554, 655-659.	0.2	2
232	Removal of Contaminant Effectiveness in Cavity Channel Flow with Different Heated Wall Position. Applied Mechanics and Materials, 0, 695, 428-432.	0.2	0
233	Prediction of Wind Flow around High-Rise Buildings Using RANS Models. Applied Mechanics and Materials, 0, 554, 724-729.	0.2	5
234	The Use of Compound Cooling Holes for Film Cooling at the End Wall of Combustor Simulator. Applied Mechanics and Materials, 0, 695, 371-375.	0.2	0

#	Article	IF	CITATIONS
235	Numerical Prediction of Contaminant Removal from Cavity in Horizontal Channel by Constrained Interpolated Profile Method. Applied Mechanics and Materials, 0, 695, 384-388.	0.2	0
236	Analyzes of Film Cooling from Cylindrical and Row Trenched Holes with Alignment Angle of 90 Degrees at Low Blowing Ratio. Applied Mechanics and Materials, 0, 695, 376-379.	0.2	1
237	The Use of Lattice Boltzmann Method for Particulate Flow Analysis. Applied Mechanics and Materials, 0, 695, 413-417.	0.2	0
238	Numerical Prediction of Thermal Effect on Flow Field around a High-Rise Building Model. Applied Mechanics and Materials, 0, 554, 680-685.	0.2	0
239	Numerical Validation for Wind Flow Field in a Street Canyon under Unstable Atmospheric Condition. Applied Mechanics and Materials, 0, 695, 671-675.	0.2	0
240	Vortex Formation for Different Geometry of Cavities Using High Reynolds Number. Applied Mechanics and Materials, 0, 699, 416-421.	0.2	0
241	Effect of Nozzle Angleson Spray Losses Reduction. Applied Mechanics and Materials, 0, 564, 216-221.	0.2	0
242	Computational Analysis of Nanofluids in Vehicle Radiator. Applied Mechanics and Materials, 0, 695, 539-543.	0.2	5
243	Film-Cooling Techniques at the End of Combustor and Inlet of Turbine in a Gas Turbine Engine: A Review. Applied Mechanics and Materials, 0, 554, 236-240.	0.2	4
244	Two-Sided Lid-Driven Cavity Flow at Different Speed Ratio by Lattice Boltzmann Method. Applied Mechanics and Materials, 0, 554, 675-679.	0.2	1
245	Nano-enhanced phase change material effects on the supercooling degree improvement: A review. IOP Conference Series: Materials Science and Engineering, 0, 469, 012036.	0.3	3
246	Numerical Investigation of Direct Absorption Solar Collector using Nanofluids: A Review. IOP Conference Series: Materials Science and Engineering, 0, 469, 012059.	0.3	9
247	The effectiveness of secondary channel on the performance of hybrid microchannel heat sink at low pumping power. IOP Conference Series: Materials Science and Engineering, 0, 469, 012032.	0.3	2
248	Experimental Evaluation on Lubricity of RBD Palm Olein Using Fourball Tribotester., 0,,.		1
249	EFFECT OF CYLINDER DIAMETER ON STATE QUANTITIES FOR IRREVERSIBLE PROCESS IN PISTON-CYLINDER SYSTEM. Frontiers in Heat and Mass Transfer, 0, 13, .	0.1	0