
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2219277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arabidopsis apoplastic fluid contains sRNA- and circular RNA–protein complexes that are located outside extracellular vesicles. Plant Cell, 2022, 34, 1863-1881.	6.6	67
2	Exciting times in plant biotic interactions. Plant Cell, 2022, 34, 1421-1424.	6.6	3
3	The development of extracellular vesicle markers for the fungal phytopathogen <i>Colletotrichum higginsianum</i> . Journal of Extracellular Vesicles, 2022, 11, e12216.	12.2	8
4	Molecular mechanisms underlying host-induced gene silencing. Plant Cell, 2022, 34, 3183-3199.	6.6	17
5	Broadening the impact of plant science through innovative, integrative, and inclusive outreach. Plant Direct, 2021, 5, e00316.	1.9	14
6	A better mousetrap to guard against anthracnose disease in bean. Journal of Experimental Botany, 2021, 72, 3487-3488.	4.8	0
7	Engineering healthy crops: molecular strategies for enhancing the plant immune system. Current Opinion in Biotechnology, 2021, 70, 151-157.	6.6	10
8	<i>Arabidopsis</i> EDR1 Protein Kinase Regulates the Association of EDS1 and PAD4 to Inhibit Cell Death. Molecular Plant-Microbe Interactions, 2020, 33, 693-703.	2.6	17
9	Loss of the Acetyltransferase NAA50 Induces Endoplasmic Reticulum Stress and Immune Responses and Suppresses Growth. Plant Physiology, 2020, 183, 1838-1854.	4.8	16
10	Growing pains: addressing the pitfalls of plant extracellular vesicle research. New Phytologist, 2020, 228, 1505-1510.	7.3	46
11	Optimizing the PBS1 Decoy System to Confer Resistance to Potyvirus Infection in <i>Arabidopsis</i> and Soybean. Molecular Plant-Microbe Interactions, 2020, 33, 932-944.	2.6	38
12	RPS5-Mediated Disease Resistance: Fundamental Insights and Translational Applications. Annual Review of Phytopathology, 2020, 58, 139-160.	7.8	28
13	AvrRpm1 Functions as an ADP-Ribosyl Transferase to Modify NOI-domain Containing Proteins, Including Arabidopsis and Soybean RPM1-interacting Protein 4. Plant Cell, 2019, 31, tpc.00020.2019.	6.6	45
14	Engineering a Decoy Substrate in Soybean to Enable Recognition of the Soybean Mosaic Virus NIa Protease. Molecular Plant-Microbe Interactions, 2019, 32, 760-769.	2.6	48
15	Plant Extracellular Vesicles Contain Diverse Small RNA Species and Are Enriched in 10- to 17-Nucleotide "Tiny―RNAs. Plant Cell, 2019, 31, 315-324.	6.6	171
16	Highlights of the miniâ€symposium on extracellular vesicles in interâ€organismal communication, held in Munich, Germany, August 2018. Journal of Extracellular Vesicles, 2019, 8, 1590116.	12.2	16
17	A Phytophthora Effector Suppresses Trans-Kingdom RNAi to Promote Disease Susceptibility. Cell Host and Microbe, 2019, 25, 153-165.e5.	11.0	173
18	Convergent Evolution of Effector Protease Recognition by <i>Arabidopsis</i> and Barley. Molecular Plant-Microbe Interactions, 2019, 32, 550-565.	2.6	47

#	Article	IF	CITATIONS
19	Extracellular vesicles as key mediators of plant–microbe interactions. Current Opinion in Plant Biology, 2018, 44, 16-22.	7.1	156
20	A Confounding Effect of Bacterial Titer in a Type III Delivery–Based Assay of Eukaryotic Effector Function. Molecular Plant-Microbe Interactions, 2018, 31, 1115-1116.	2.6	1
21	The Positives and Negatives of NPR: A Unifying Model for Salicylic Acid Signaling in Plants. Cell, 2018, 173, 1314-1315.	28.9	42
22	Common Bean Subtelomeres Are Hot Spots of Recombination and Favor Resistance Gene Evolution. Frontiers in Plant Science, 2018, 9, 1185.	3.6	54
23	Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins. Plant Physiology, 2017, 173, 728-741.	4.8	400
24	Isolation and Quantification of Plant Extracellular Vesicles. Bio-protocol, 2017, 7, e2533.	0.4	24
25	Molecular Soybean-Pathogen Interactions. Annual Review of Phytopathology, 2016, 54, 443-468.	7.8	67
26	Using decoys to expand the recognition specificity of a plant disease resistance protein. Science, 2016, 351, 684-687.	12.6	176
27	Broadly Conserved Fungal Effector BEC1019 Suppresses Host Cell Death and Enhances Pathogen Virulence in Powdery Mildew of Barley (<i>Hordeum vulgare</i> L.) (Retracted). Molecular Plant-Microbe Interactions, 2015, 28, 968-983.	2.6	33
28	<i>Pseudomonas syringae</i> Effector AvrPphB Suppresses AvrB-Induced Activation of RPM1 but Not AvrRpm1-Induced Activation. Molecular Plant-Microbe Interactions, 2015, 28, 727-735.	2.6	48
29	The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability. Plant Physiology, 2015, 169, 1405-1417.	4.8	76
30	Exploiting Combinatorial Interactions to Expand NLR Specificity. Cell Host and Microbe, 2015, 18, 265-267.	11.0	6
31	Recognition of the Protein Kinase AVRPPHB SUSCEPTIBLE1 by the Disease Resistance Protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 Is Dependent on <i>S</i> -Acylation and an Exposed Loop in AVRPPHB SUSCEPTIBLE1 Â Â. Plant Physiology, 2014, 164, 340-351.	4.8	108
32	Evolutionary Relationship of Disease Resistance Genes in Soybean and Arabidopsis Specific for the <i>Pseudomonas syringae</i> Effectors AvrB and AvrRpm1. Plant Physiology, 2014, 166, 235-251.	4.8	36
33	The <i>Arabidopsis</i> EDR1 Protein Kinase Negatively Regulates the ATL1 E3 Ubiquitin Ligase to Suppress Cell Death. Plant Cell, 2014, 26, 4532-4546.	6.6	52
34	The long-term maintenance of a resistance polymorphism through diffuse interactions. Nature, 2014, 512, 436-440.	27.8	182
35	XVI Congress on Molecular Plant-Microbe Interactions Meeting Report. Molecular Plant-Microbe Interactions, 2014, 27, S1-S5.	2.6	1
36	Determining the GmRIN4 Requirements of the Soybean Disease Resistance Proteins Rpg1b and Rpg1r Using a Nicotiana glutinosa-Based Agroinfiltration System. PLoS ONE, 2014, 9, e108159.	2.5	21

#	Article	IF	CITATIONS
37	In vitro Detection of S-acylation on Recombinant Proteins via the Biotin-Switch Technique. Bio-protocol, 2014, 4, .	0.4	1
38	Recent Advances in Plant NLR Structure, Function, Localization, and Signaling. Frontiers in Immunology, 2013, 4, 348.	4.8	156
39	The KEEP ON GOING Protein of <i>Arabidopsis</i> Regulates Intracellular Protein Trafficking and Is Degraded during Fungal Infection. Plant Cell, 2012, 24, 4717-4730.	6.6	85
40	Structure-Function Analysis of the Coiled-Coil and Leucine-Rich Repeat Domains of the RPS5 Disease Resistance Protein Â. Plant Physiology, 2012, 158, 1819-1832.	4.8	209
41	Evolution of a Complex Disease Resistance Gene Cluster in Diploid <i>Phaseolus</i> and Tetraploid <i>Glycine</i> Â Â Â. Plant Physiology, 2012, 159, 336-354.	4.8	76
42	Activation of a plant nucleotide binding-leucine rich repeat disease resistance protein by a modified self protein. Cellular Microbiology, 2012, 14, 1071-1084.	2.1	77
43	Activation of Plant Nod-like Receptors: How Indirect Can It Be?. Cell Host and Microbe, 2011, 9, 87-89.	11.0	6
44	Negative regulation of defence signalling pathways by the EDR1 protein kinase. Molecular Plant Pathology, 2011, 12, 746-758.	4.2	30
45	The KEEP ON GOING Protein of Arabidopsis Recruits the ENHANCED DISEASE RESISTANCE1 Protein to Trans-Golgi Network/Early Endosome Vesicles Â. Plant Physiology, 2011, 155, 1827-1838.	4.8	96
46	Synergistic Activation of Defense Responses in Arabidopsis by Simultaneous Loss of the GSL5 Callose Synthase and the EDR1 Protein Kinase. Molecular Plant-Microbe Interactions, 2010, 23, 578-584.	2.6	27
47	Specific resistances against <i>Pseudomonas syringae</i> effectors AvrB and AvrRpm1 have evolved differently in common bean (<i>Phaseolus vulgaris</i>), soybean (<i>Glycine max</i>), and <i>Arabidopsis thaliana</i> . New Phytologist, 2010, 187, 941-956.	7.3	50
48	Pseudomonas syringae Effector Protein AvrB Perturbs Arabidopsis Hormone Signaling by Activating MAP Kinase 4. Cell Host and Microbe, 2010, 7, 164-175.	11.0	178
49	Differential Accumulation of Retroelements and Diversification of NB-LRR Disease Resistance Genes in Duplicated Regions following Polyploidy in the Ancestor of Soybean Â. Plant Physiology, 2008, 148, 1740-1759.	4.8	140
50	Powdery Mildew Resistance Conferred by Loss of the ENHANCED DISEASE RESISTANCE1 Protein Kinase Is Suppressed by a Missense Mutation in <i>KEEP ON GOING</i> , a Regulator of Abscisic Acid Signaling Â. Plant Physiology, 2008, 148, 1510-1522.	4.8	68
51	Replication of Nonautonomous Retroelements in Soybean Appears to Be Both Recent and Common Â. Plant Physiology, 2008, 148, 1760-1771.	4.8	57
52	Mutations in LACS2, a Long-Chain Acyl-Coenzyme A Synthetase, Enhance Susceptibility to Avirulent Pseudomonas syringae But Confer Resistance to Botrytis cinerea in Arabidopsis. Plant Physiology, 2007, 144, 1093-1103.	4.8	120
53	The GH3 Acyl Adenylase Family Member PBS3 Regulates Salicylic Acid-Dependent Defense Responses in Arabidopsis. Plant Physiology, 2007, 144, 1144-1156.	4.8	192
54	Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2531-2536.	7.1	365

#	Article	IF	CITATIONS
55	AvrB mutants lose both virulence and avirulence activities on soybean and Arabidopsis. Molecular Microbiology, 2006, 60, 951-962.	2.5	33
56	A mutation in the GTP hydrolysis site of Arabidopsis dynamin-related protein 1E confers enhanced cell death in response to powdery mildew infection. Plant Journal, 2006, 47, 75-84.	5.7	73
57	Plant NBS-LRR proteins in pathogen sensing and host defense. Nature Immunology, 2006, 7, 1243-1249.	14.5	621
58	Diversification of Non-TIR Class NB-LRR Genes in Relation to Whole-Genome Duplication Events in Arabidopsis. Molecular Plant-Microbe Interactions, 2005, 18, 103-109.	2.6	24
59	Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. Plant Journal, 2005, 44, 245-257.	5.7	96
60	Regulation of Plant Disease Resistance, Stress Responses, Cell Death, and Ethylene Signaling in Arabidopsis by the EDR1 Protein Kinase. Plant Physiology, 2005, 138, 1018-1026.	4.8	140
61	Convergent Evolution of Disease Resistance Gene Specificity in Two Flowering Plant Families[W]. Plant Cell, 2004, 16, 309-318.	6.6	131
62	Guarding the Goods. New Insights into the Central Alarm System of Plants: Figure 1 Plant Physiology, 2004, 135, 695-701.	4.8	63
63	The crystal structure of Pseudomonas avirulence protein AvrPphB: A papain-like fold with a distinct substrate-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 302-307.	7.1	113
64	ThePseudomonas syringaetype III effector AvrRpt2 functions downstream or independently of SA to promote virulence onArabidopsis thaliana. Plant Journal, 2004, 37, 494-504.	5.7	57
65	Decoding genetics and molecular biology: Sharing the movies in our heads. New Directions for Teaching and Learning, 2004, 2004, 23-32.	0.4	6
66	New effects of type III effectors. Molecular Microbiology, 2003, 50, 363-365.	2.5	20
67	Cleavage of Arabidopsis PBS1 by a Bacterial Type III Effector. Science, 2003, 301, 1230-1233.	12.6	504
68	Resistance Rodeo: Rounding up the Full Complement of Arabidopsis NBS-LRR Genes. Plant Cell, 2003, 15, 806-807.	6.6	7
69	Genetic and Physical Localization of the Soybean Rpg1-b Disease Resistance Gene Reveals a Complex Locus Containing Several Tightly Linked Families of NBS-LRR Genes. Molecular Plant-Microbe Interactions, 2003, 16, 817-826.	2.6	77
70	RAR1 and NDR1 Contribute Quantitatively to Disease Resistance in Arabidopsis, and Their Relative Contributions Are Dependent on the R Gene Assayed. Plant Cell, 2002, 14, 1005-1015.	6.6	218
71	A Yersinia Effector and a Pseudomonas Avirulence Protein Define a Family of Cysteine Proteases Functioning in Bacterial Pathogenesis. Cell, 2002, 109, 575-588.	28.9	417
72	Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science, 2002, 7, 301-308.	8.8	1,080

#	Article	IF	CITATIONS
73	Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant Journal, 2002, 32, 975-983.	5.7	72
74	Mapping out the roles of MAP kinases in plant defense. Trends in Plant Science, 2001, 6, 392-394.	8.8	54
75	Targeting the targets of Type III effector proteins secreted by phytopathogenic bacteria. Molecular Plant Pathology, 2001, 2, 109-115.	4.2	16
76	The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant Journal, 2001, 26, 101-112.	5.7	214
77	A New Ac-Like Transposon of Arabidopsis Is Associated With a Deletion of the RPS5 Disease Resistance Gene. Genetics, 1999, 151, 1581-1589.	2.9	52
78	Identification of Three Putative Signal Transduction Genes Involved in R Gene-Specified Disease Resistance in Arabidopsis. Genetics, 1999, 152, 401-412.	2.9	173
79	Genetic dissection of R gene signal transduction pathways. Current Opinion in Plant Biology, 1998, 1, 299-304.	7.1	54
80	A Mutation within the Leucine-Rich Repeat Domain of the Arabidopsis Disease Resistance Gene RPS5 Partially Suppresses Multiple Bacterial and Downy Mildew Resistance Genes. Plant Cell, 1998, 10, 1439-1452.	6.6	309
81	An Arabidopsis Mutant with Enhanced Resistance to Powdery Mildew. Plant Cell, 1998, 10, 947-956.	6.6	299
82	An Arabidopsis Mutant with Enhanced Resistance to Powdery Mildew. Plant Cell, 1998, 10, 947.	6.6	25
83	A Mutation within the Leucine-Rich Repeat Domain of the Arabidopsis Disease Resistance Gene RPS5 Partially Suppresses Multiple Bacterial and Downy Mildew Resistance Genes. Plant Cell, 1998, 10, 1439.	6.6	24
84	Plant-Pathogen Interactions: Unexpected Findings on Signal Input and Output. Plant Cell, 1996, 8, 133.	6.6	0
85	Plant-parasite interactions: has the gene-for-gene model become outdated?. Trends in Microbiology, 1995, 3, 483-485.	7.7	15
86	A Disease Resistance Gene in Arabidopsis with Specificity for Two Different Pathogen Avirulence Genes. Plant Cell, 1994, 6, 927.	6.6	44
87	Identification of a disease resistance locus in Arabidopsis that is functionally homologous to the RPG1 locus of soybean. Plant Journal, 1993, 4, 813-820.	5.7	92
88	RPS2, an Arabidopsis Disease Resistance Locus Specifying Recognition of Pseudomonas syringae Strains Expressing the Avirulence Gene avrRpt2. Plant Cell, 1993, 5, 865.	6.6	5
89	Arabidopsis as a Model System for Studying Plant Disease Resistance Mechanisms. Annals of the New York Academy of Sciences, 1991, 646, 228-230.	3.8	0
90	Identification of Pseudomonas syringae Pathogens of Arabidopsis and a Bacterial Locus Determining Avirulence on Both Arabidopsis and Soybean. Plant Cell, 1991, 3, 49.	6.6	137

		Roger W Innes		
#	Article		IF	CITATIONS
91	Flavones induce expression of nodulation genes in Rhizobium. Nature, 1986, 323, 632	2-635.	27.8	498
92	Flavones Induce Expression of the Nodulation Genes in Rhizobium. , 1986, , 115-121.			6
93	Plant factors induce expression of nodulation and host-range genes in Rhizobium trifo Genetics and Genomics, 1985, 201, 426-432.	lii. Molecular	2.4	132