Xiangfeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2219102/publications.pdf

Version: 2024-02-01

134 papers	7,000 citations	41344 49 h-index	78 g-index
135	135	135	8063 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	A ketone-containing all-solid-state polymer electrolyte with rapid Li-ion conduction for lithium metal batteries. Chemical Engineering Journal, 2022, 427, 132025.	12.7	20
2	3D structural lithium alginate-based gel polymer electrolytes with superior high-rate long cycling performance for high-energy lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 707-718.	10.3	28
3	Tuning Bulk O ₂ and Nonbonding Oxygen State for Reversible Anionic Redox Chemistry in P2â€Layered Cathodes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
4	Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy. Nature Communications, 2022, 13, 1123.	12.8	81
5	Designing a durable high-rate K0.45Ni0.1Fe0.1Mn0.8O2 cathode for K-ion batteries: A joint study of theory and experiment. Science China Materials, 2022, 65, 1741-1750.	6.3	3
6	Facilitating Reversible Cation Migration and Suppressing O ₂ Escape for High Performance Liâ€Rich Oxide Cathodes. Small, 2022, 18, e2201014.	10.0	28
7	Stabilizing the Anionic Redox in 4.6 VÂLiCoO ₂ Cathode through Adjusting Oxygen Magnetic Moment. Advanced Functional Materials, 2022, 32, .	14.9	19
8	Water-Induced Surface Reconstruction of Co ₃ O ₄ on the (111) Plane for High-Efficiency Li–O ₂ Batteries in a Hybrid Electrolyte. ACS Applied Materials & Interfaces, 2022, 14, 28965-28976.	8.0	12
9	Achieving a High-Rate and Stable Li ₄ Ti ₅ O ₁₂ Anode via a "Three-in-One―Strategy. Journal of Physical Chemistry C, 2022, 126, 12283-12293.	3.1	4
10	Lattice Modulation by Ca/P Dual-Doping for Fast and Stable Li ⁺ Intercalation/Extraction in High-Voltage LiCoO ₂ . Journal of Physical Chemistry C, 2021, 125, 2364-2372.	3.1	17
11	Mitigating the P2–O2 transition and Na ⁺ /vacancy ordering in Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ by anion/cation dual-doping for fast and stable Na ⁺ insertion/extraction. Journal of Materials Chemistry A, 2021, 9, 10803-10811.	10.3	23
12	Unraveling the Distinct Roles of Mg Occupation on Li or Co Sites on High-Voltage LiCoO $<$ sub $>$ 2 $<$ /sub $>$. Journal of the Electrochemical Society, 2021, 168, 030528.	2.9	13
13	Tuning Co ²⁺ Coordination in Cobalt Layered Double Hydroxide Nanosheets via Fe ³⁺ Doping for Efficient Oxygen Evolution. Inorganic Chemistry, 2021, 60, 5252-5263.	4.0	28
14	Simultaneously Enhancing Structural Stability and Cationic Redox in Na _{0.67} Mn _{0.75} Fe _{0.25} O ₂ through a Synergy of Multisite Substitution. Journal of Physical Chemistry C, 2021, 125, 8105-8115.	3.1	6
15	Addressing voltage decay in Li-rich cathodes by broadening the gap between metallic and anionic bands. Nature Communications, 2021, 12, 3071.	12.8	81
16	Tuning fermi level and band gap in Li ₄ Ti ₅ O ₁₂ by doping and vacancy for ultrafast Li ⁺ insertion/extraction. Journal of the American Ceramic Society, 2021, 104, 5934-5945.	3.8	17
17	Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries. Energy Storage Materials, 2021, 38, 130-140.	18.0	65
18	A collaborative strategy with ionic conductive Na2SiO3 coating and Si doping of P2-Na0.67Fe0.5Mn0.5O2 cathode: An effective solution to capacity attenuation. Electrochimica Acta, 2021, 384, 138362.	5.2	21

#	Article	IF	Citations
19	Synergy of Oxygen-Deficient LaFeO _{3â^î^} and N-Doped Reduced Graphene Oxide in Oxygen Reduction Reaction in Alkaline Solutions. ACS Applied Energy Materials, 2021, 4, 8745-8754.	5.1	4
20	Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nature Communications, 2021, 12, 5267.	12.8	122
21	Tailoring Co3d and O2p Band Centers to Inhibit Oxygen Escape for Stable 4.6â€V LiCoO ₂ Cathodes. Angewandte Chemie - International Edition, 2021, 60, 27102-27112.	13.8	89
22	Tailoring Co3d and O2p Band Centers to Inhibit Oxygen Escape for Stable 4.6 V LiCoO ₂ Cathodes. Angewandte Chemie, 2021, 133, 27308-27318.	2.0	20
23	O3-type NaNi0.5Mn0.5O2 hollow microbars with exposed {0â€1â€0} facets as high performance cathode materials for sodium-ion batteries. Chemical Engineering Journal, 2020, 382, 122978.	12.7	54
24	Understanding the Multiple Effects of TiO ₂ Coating on NaMn _{0.33} Fe _{0.33} Ni _{0.33} O ₂ Cathode Material for Na-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 933-942.	5.1	78
25	A <i>p</i> i>-phenylenediamine oligomer-mediated Li–O ₂ battery with an extremely low charge potential of 3.1 V. Journal of Materials Chemistry A, 2020, 8, 22754-22762.	10.3	9
26	Tuning Both Anionic and Cationic Redox Chemistry of Li-Rich Li _{1.2} Mn _{0.6} Ni _{0.2} O ₂ via a "Three-in-One―Strategy. Chemistry of Materials, 2020, 32, 9404-9414.	6.7	27
27	Oxygen defects-engineered LaFeO3-x nanosheets as efficient electrocatalysts for lithium-oxygen battery. Journal of Catalysis, 2020, 384, 199-207.	6.2	32
28	The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials. Journal of Materials Chemistry A, 2020, 8, 7733-7745.	10.3	101
29	Reducing the charge overpotential of Li–O ₂ batteries through band-alignment cathode design. Energy and Environmental Science, 2020, 13, 2540-2548.	30.8	30
30	Improving Cycling Stability and Rate Capability of High-Voltage LiCoO ₂ Through an Integration of Lattice Doping and Nanoscale Coating. Journal of Nanoscience and Nanotechnology, 2020, 20, 2473-2481.	0.9	7
31	Improving the cycling and air-storage stability of LiNi _{0.8} through integrated surface/interface/doping engineering. Journal of Materials Chemistry A, 2020, 8, 5234-5245.	10.3	56
32	Understanding the Enhancement Mechanism of A-Site-Deficient La _{<i>x</i>} NiO ₃ as an Oxygen Redox Catalyst. Chemistry of Materials, 2020, 32, 1864-1875.	6.7	54
33	Tuning the crystal and electronic structure of Li4Ti5O12 via Mg/La Co-doping for fast and stable lithium storage. Ceramics International, 2020, 46, 12965-12974.	4.8	20
34	Designing advanced P3-type K0.45Ni0.1Co0.1Mn0.8O2 and improving electrochemical performance via Al/Mg doping as a new cathode Material for potassium-ion batteries. Journal of Power Sources, 2020, 464, 228190.	7.8	34
35	A Heterojunction Structured WO _{2.9} -WSe ₂ Nanoradiosensitizer Increases Local Tumor Ablation and Checkpoint Blockade Immunotherapy upon Low Radiation Dose. ACS Nano, 2020, 14, 5400-5416.	14.6	104
36	Probing the Selfâ€Boosting Catalysis of LiCoO ₂ in Li–O ₂ Battery with Multiple In Situ/Operando Techniques. Advanced Functional Materials, 2020, 30, 2002223.	14.9	28

#	Article	IF	CITATIONS
37	通过一ç§ååŒç−略调èŠ,P2åž‹Na0.67Mn0.5Fe0.5O2æ£æžææ−™çš"é~′/é~³ç¦»åæ°§åŒ−è¿~原å应. Science	e Claisa Ma	te da ls, 2020
38	Unraveling the Roles of La Substitution for Different Transition Metals on P2-Na _{0.67} Mn _{0.6} Ni _{0.2} Co _{0.2} O _{O₂ Cathode Materials. Journal of the Electrochemical Society, 2020, 167, 160506.}	2.9	4
39	Understanding the roles of Ti on the structure and electrochemical performances of Li2Ru1-Ti O3 cathode materials for Li-ion batteries. Journal of Energy Chemistry, 2019, 33, 9-16.	12.9	9
40	General Water-Induced Self-Exfoliation Strategy for the Ultrafast and Large-Scale Synthesis of Metal Hydroxide Nanosheets. Journal of Physical Chemistry Letters, 2019, 10, 6695-6700.	4.6	5
41	Understanding the synergic roles of MgO coating on the cycling and rate performance of Na0.67Mn0.5Fe0.5O2 cathode. Applied Surface Science, 2019, 497, 143814.	6.1	43
42	The Synergic Effects of Zr Doping and Li ₂ TiO ₃ Coating on the Crystal Structure and Electrochemical Performances of Li-Rich Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ . Journal of the Electrochemical Society, 2019, 166, A1323-A1329.	2.9	19
43	Mitigating the voltage fading and lattice cell variations of O3-NaNi0.2Fe0.35Mn0.45O2 for high performance Na-ion battery cathode by Zn doping. Journal of Alloys and Compounds, 2019, 794, 509-517.	5. 5	36
44	Ultrathin Co ₃ O ₄ Nanosheets with Edge-Enriched {111} Planes as Efficient Catalysts for Lithium–Oxygen Batteries. ACS Catalysis, 2019, 9, 3773-3782.	11.2	76
45	Simultaneously tuning cationic and anionic redox in a P2-Na _{0.67} Mn _{0.75} Ni _{0.25} O ₂ cathode material through synergic Cu/Mg co-doping. Journal of Materials Chemistry A, 2019, 7, 9099-9109.	10.3	76
46	Unveiling the Synergic Roles of Mg/Zr Co-Doping on Rate Capability and Cycling Stability of Li ₄ Ti ₅ O ₁₂ . Journal of the Electrochemical Society, 2019, 166, A658-A666.	2.9	16
47	Lithiumâ€lon Batteries: Tuning Anionic Redox Activity and Reversibility for a Highâ€Capacity Liâ€Rich Mnâ€Based Oxide Cathode via an Integrated Strategy (Adv. Funct. Mater. 10/2019). Advanced Functional Materials, 2019, 29, 1970064.	14.9	7
48	Enhancing the Catalytic Activity of Co ₃ O ₄ Nanosheets for Li-O ₂ Batteries by the Incoporation of Oxygen Vacancy with Hydrazine Hydrate Reduction. Inorganic Chemistry, 2019, 58, 4989-4996.	4.0	45
49	Probing the Nature of Li ⁺ /Ni ²⁺ Disorder on the Structure and Electrochemical Performance in Ni-Based Layered Oxide Cathodes. Journal of the Electrochemical Society, 2019, 166, A4097-A4105.	2.9	18
50	Topological polymer electrolyte containing poly(pinacol vinylboronate) segments composited with ceramic nanowires towards ambient-temperature superior performance all-solid-state lithium batteries. Journal of Power Sources, 2019, 413, 318-326.	7.8	22
51	Revealing Hidden Facts of Li Anode in Cycled Lithium–Oxygen Batteries through X-ray and Neutron Tomography. ACS Energy Letters, 2019, 4, 306-316.	17.4	61
52	The synergic effects of Ca and Sm co-doping on the crystal structure and electrochemical performances of Li4-xCaxTi5-xSmxO12 anode material. Solid State Sciences, 2019, 87, 110-117.	3.2	7
53	Tuning Anionic Redox Activity and Reversibility for a Highâ€Capacity Liâ€Rich Mnâ€Based Oxide Cathode via an Integrated Strategy. Advanced Functional Materials, 2019, 29, 1806706.	14.9	121
54	New Insights into the Roles of Mg in Improving the Rate Capability and Cycling Stability of O3-NaMn _{0.48} Ni _{0.2} Fe _{0.3} Mg _{0.02} O <csub>2 for Sodium-Ion Batteries. ACS Applied Materials & Sodium-Ion Batteries. AC</csub>	8.0	113

#	Article	IF	CITATIONS
55	Different Effects of Al Substitution for Mn or Fe on the Structure and Electrochemical Properties of Na _{0.67} Mn _{0.5} Fe _{0.5} O ₂ as a Sodium Ion Battery Cathode Material. Inorganic Chemistry, 2018, 57, 5249-5257.	4.0	78
56	Improving the Performance of Layered Oxide Cathode Materials with Footballâ€Like Hierarchical Structure for Naâ€Ion Batteries by Incorporating Mg ²⁺ into Vacancies in Naâ€Ion Layers. ChemSusChem, 2018, 11, 1223-1231.	6.8	35
57	Enhancing the Catalytic Activity of Co ₃ O ₄ for Li–O ₂ Batteries through the Synergy of Surface/Interface/Doping Engineering. ACS Catalysis, 2018, 8, 1955-1963.	11.2	111
58	Modulating the Electrochemical Performances of Layered Cathode Materials for Sodium Ion Batteries through Tuning Coulombic Repulsion between Negatively Charged TMO ₂ Slabs. ACS Applied Materials & Distriction (1988) 10, 1707-1718.	8.0	34
59	Intelligent MoS ₂ Nanotheranostic for Targeted and Enzyme-/pH-/NIR-Responsive Drug Delivery To Overcome Cancer Chemotherapy Resistance Guided by PET Imaging. ACS Applied Materials & Interfaces, 2018, 10, 4271-4284.	8.0	137
60	Silver-Nanoparticle-Embedded Porous Silicon Disks Enabled SERS Signal Amplification for Selective Glutathione Detection. ACS Applied Nano Materials, 2018, 1, 410-417.	5.0	39
61	Structure modulation and performance optimization of P2-Na0.7Mn0.75Fe0.25-x-yNixCoyO2 through a synergistic substitution ofANi and Co for Fe. Electrochimica Acta, 2018, 277, 88-99.	5.2	29
62	Improving the electrochemical performances of Li-rich Li1.20Ni0.13Co0.13Mn0.54O2 through a cooperative doping of Na+ and PO43â° with Na3PO4. Journal of Power Sources, 2018, 375, 1-10.	7.8	100
63	Understanding Oxygen Redox in Cu-Doped P2-Na _{0.67} Mn _{0.8} Fe _{0.1} Co _{0.1} O _{O₂ Cathode Materials for Na-lon Batteries. Journal of the Electrochemical Society, 2018, 165, A3854-A3861.}	2.9	28
64	Bi ₂ S ₃ –Tween 20 Nanodots Loading PI3K Inhibitor, LY294002, for Mild Photothermal Therapy of LoVo Cells In Vitro and In Vivo. Advanced Healthcare Materials, 2018, 7, e1800830.	7.6	32
65	Enhancing the Rate Capability and Cycling Stability of Na _{0.67} Mn _{>0.7} Fe _{0.2} Co _{0.1} O ₂ through a Synergy of Zr ⁴⁺ Doping and ZrO ₂ Coating. Journal of Physical Chemistry C, 2018, 122, 25909-25916.	3.1	28
66	Six-arm star polymer based on discotic liquid crystal as high performance all-solid-state polymer electrolyte for lithium-ion batteries. Journal of Power Sources, 2018, 395, 137-147.	7.8	50
67	Three-dimensional layered double hydroxide membranes: fabrication technique, growth mechanism, and enhanced photocatalytic activity. Chemical Communications, 2018, 54, 8494-8497.	4.1	13
68	CoO/CoP Heterostructured Nanosheets with an O–P Interpenetrated Interface as a Bifunctional Electrocatalyst for Na–O ₂ Battery. ACS Catalysis, 2018, 8, 8953-8960.	11.2	98
69	Facile Synthesis of Near-Infrared Emissive CdS Quantum Dots for Live Cells Imaging. Journal of Nanoscience and Nanotechnology, 2018, 18, 2271-2277.	0.9	5
70	Effects of doping Fe cations on crystal structure and thermal expansion property of Yb2Mo3O12. Chinese Chemical Letters, 2017, 28, 1600-1606.	9.0	4
71	The synthesis of a hyperbranched star polymeric ionic liquid and its application in a polymer electrolyte. Polymer Chemistry, 2017, 8, 3177-3185.	3.9	42
72	Electrochemical performances of a new solid composite polymer electrolyte based on hyperbranched star polymer and ionic liquid for lithium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2355-2364.	2.5	16

#	Article	IF	Citations
73	Polyoxometalate-Based Radiosensitization Platform for Treating Hypoxic Tumors by Attenuating Radioresistance and Enhancing Radiation Response. ACS Nano, 2017, 11, 7164-7176.	14.6	168
74	N-Doped Defective Carbon Layer Encapsulated W2C as a Multifunctional Cathode Catalyst for High Performance Li-O2 Battery. Electrochimica Acta, 2017, 245, 430-437.	5.2	21
75	Facile synthesis of carbon-coated LiVO3 with enhanced electrochemical performances as cathode materials for lithium-ion batteries. Ceramics International, 2017, 43, 2343-2349.	4.8	12
76	Zr-doped P2-Na0.75Mn0.55Ni0.25Co0.05Fe0.10Zr0.05O2 as high-rate performance cathode material for sodium ion batteries. Electrochimica Acta, 2017, 223, 92-99.	5.2	83
77	An amorphous LiO2-based Li-O2 battery with low overpotential and high rate capability. Nano Energy, 2017, 41, 535-542.	16.0	71
78	Boosting the Electrocatalytic Activity of Co ₃ O ₄ Nanosheets for a Li-O ₂ Battery through Modulating Inner Oxygen Vacancy and Exterior Co ³⁺ /Co ²⁺ Ratio. ACS Catalysis, 2017, 7, 6533-6541.	11.2	238
79	Suppressing the Structure Deterioration of Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ through Atom-Scale Interfacial Integration of Self-Forming Hierarchical Spinel Layer with Ni Gradient Concentration. ACS Applied Materials & Amp: Interfaces. 2017, 9, 29794-29803.	8.0	104
80	Facile Synthesis and Enhanced Electrochemical Performances of Hierarchical ZnFe2O4-Graphene Hybrid as an Anode Material for Li-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2017, 17, 2093-2097.	0.9	0
81	Li-Substituted Co-Free Layered P2/O3 Biphasic Na _{0.67} Mn _{0.55} Ni _{0.25} Ti _{0.2–<i>x</i>} Li _{<i>x</i>} <i>x</i> as High-Rate-Capability Cathode Materials for Sodium Ion Batteries. Journal of Physical Chemistry C, 2016. 120. 9007-9016.	o>Q	2
82	New insights into the modification mechanism of Li-rich Li _{1.2} Mn _{0.6} Ni _{0.2} O ₂ coated by Li ₂ ZrO ₃ . Physical Chemistry Chemical Physics, 2016, 18, 13322-13331.	2.8	69
83	Multifunctional WS ₂ @Poly(ethylene imine) Nanoplatforms for Imaging Guided Geneâ€Photothermal Synergistic Therapy of Cancer. Advanced Healthcare Materials, 2016, 5, 2776-2787.	7.6	86
84	Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy. Physical Chemistry Chemical Physics, 2016, 18, 25711-25720.	2.8	38
85	Enhancing the Performance of CoO as Cathode Catalyst for Li-O2 Batteries through Confinement into Bimodal Mesoporous Carbon. Electrochimica Acta, 2016, 201, 134-141.	5.2	16
86	Photothermal Therapy: Multifunctional WS2 @Polyetherimide Nanoplatforms for Imaging Guided Gene-Photothermal Synergistic Therapy of Cancer (Adv. Healthcare Mater. 21/2016). Advanced Healthcare Materials, 2016, 5, 2834-2834.	7.6	1
87	Unveiling the Role of Co in Improving the High-Rate Capability and Cycling Performance of Layered Na _{0.7} Mn _{0.7} Ni _{0.3–⟨i⟩x⟨ i⟩} Co _{⟨i⟩x⟨ i⟩} O ₂ Cathode Materials for Sodium-Ion Batteries. ACS Applied Materials & Diterfaces, 2016, 8, 15439-15448.	8.0	116
88	Unraveling the multiple effects of Li 2 ZrO 3 coating on the structural and electrochemical performances of LiCoO 2 as high-voltage cathode materials. Electrochimica Acta, 2016, 209, 102-110.	5.2	85
89	Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta, 2016, 150, 54-60.	5.5	167
90	Carbon-Dotted Defective CoO with Oxygen Vacancies: A Synergetic Design of Bifunctional Cathode Catalyst for Li–O ₂ Batteries. ACS Catalysis, 2016, 6, 400-406.	11.2	194

#	Article	IF	Citations
91	Neutron diffraction analysis and electrochemical performance of spinel Ni(Mn2â^'Co)O4 as anode materials for lithium ion battery. Materials Research Bulletin, 2016, 77, 265-270.	5.2	10
92	Ultrahigh cycling stability and rate capability of ZnFe ₂ O ₄ @graphene hybrid anode prepared through a facile syn-graphenization strategy. New Journal of Chemistry, 2016, 40, 3139-3146.	2.8	15
93	Microwave-assisted facile synthesis of yellow fluorescent carbon dots from o-phenylenediamine for cell imaging and sensitive detection of Fe ³⁺ and H ₂ O ₂ . RSC Advances, 2016, 6, 17704-17712.	3.6	121
94	New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer. Journal of Materials Chemistry A, 2016, 4, 3453-3461.	10.3	101
95	Valine-derived carbon dots with colour-tunable fluorescence for the detection of Hg2+ with high sensitivity and selectivity. New Journal of Chemistry, 2015, 39, 6201-6206.	2.8	27
96	A study of the structure–activity relationship of the electrochemical performance and Li/Ni mixing of lithium-rich materials by neutron diffraction. RSC Advances, 2015, 5, 31238-31244.	3.6	31
97	Facile and efficient exfoliation of inorganic layered materials using liquid alkali metal alloys. Chemical Communications, 2015, 51, 10961-10964.	4.1	40
98	High Rate Capability and Excellent Thermal Stability of Li ⁺ -Conductive Li ₂ ZrO ₃ -Coated LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ via a Synchronous Lithiation Strategy, Journal of Physical Chemistry C, 2015, 119, 20350-20356.	3.1	94
99	Facet-Dependent Electrocatalytic Performance of Co ₃ O ₄ for Rechargeable Li–O ₂ Battery. Journal of Physical Chemistry C, 2015, 119, 4516-4523.	3.1	99
100	Fe3O4@porous carbon hybrid as the anode material for a lithium-ion battery: performance optimization by composition and microstructure tailoring. New Journal of Chemistry, 2015, 39, 3435-3443.	2.8	17
101	Simple and Efficient Synthesis of Strongly Green Fluorescent Carbon Dots with Upconversion Property for Direct Cell Imaging. Particle and Particle Systems Characterization, 2015, 32, 542-546.	2.3	33
102	Direct synthesis of CdS nanodots embedded in bovine serum albumin without external sulfur source for cell imaging. RSC Advances, 2015, 5, 10014-10017.	3.6	6
103	Silica-coated bismuth sulfide nanorods as multimodal contrast agents for a non-invasive visualization of the gastrointestinal tract. Nanoscale, 2015, 7, 12581-12591.	5.6	60
104	Designing an advanced P2-Na _{0.67} Mn _{0.65} Ni _{0.2} Co _{0.15} O ₂ layered cathode material for Na-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16272-16278.	10.3	100
105	The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 17598-17605.	10.3	155
106	Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries. Journal of Power Sources, 2015, 294, 141-149.	7.8	88
107	The synergic effects of Na and K co-doping on the crystal structure and electrochemical properties of Li4Ti5O12 as anode material for lithium ion battery. Solid State Sciences, 2015, 44, 39-44.	3.2	49
108	Controlled synthesis and enhanced electrochemical performance of Prussian blue analogue-derived hollow FeCo ₂ O ₄ nanospheres as lithium-ion battery anodes. RSC Advances, 2015, 5, 36575-36581.	3.6	55

#	Article	IF	Citations
109	Ion conducting Li ₂ SiO ₃ -coated lithium-rich layered oxide exhibiting high rate capability and low polarization. Chemical Communications, 2015, 51, 9093-9096.	4.1	111
110	The effects of Co doping on the crystal structure and electrochemical performance of Mg(Mn2Ââ^'ÂxCox)O4 negative materials for lithium ion battery. Solid State Sciences, 2015, 39, 23-28.	3.2	15
111	Decomposition Behavior of Eutectic LiBH ₄ â€"Mg(BH ₄) ₂ and Its Confinement Effects in Ordered Nanoporous Carbon. Journal of Physical Chemistry C, 2014, 118, 27265-27271.	3.1	27
112	The formation mechanism and photocatalytic activity of hierarchical NiAl–LDH films on an Al substrate prepared under acidic conditions. Chemical Communications, 2014, 50, 2301-2303.	4.1	14
113	Enhancing the electrochemical properties of NiFe2O4 anode for lithium ion battery through a simple hydrogenation modification. International Journal of Hydrogen Energy, 2014, 39, 11258-11266.	7.1	35
114	Influence of Y and Al co-doping on the crystal structure and magnetic properties of Nd2â^'xYxFe17â^'yAly. Intermetallics, 2014, 55, 199-203.	3.9	2
115	Simultaneously enhancing up-conversion fluorescence and red-shifting down-conversion luminescence of carbon dots by a simple hydrothermal process. Journal of Materials Chemistry B, 2014, 2, 6947-6952.	5.8	44
116	Characterization of the Dehydrogenation Process of LiBH ₄ Confined in Nanoporous Carbon. Journal of Physical Chemistry C, 2014, 118, 8843-8851.	3.1	23
117	Probing the unusual anion mobility of LiBH4 confined in highly ordered nanoporous carbon frameworks via solid state NMR and quasielastic neutron scattering. Journal of Materials Chemistry A, 2013, 1, 9935.	10.3	42
118	Improving the Electrochemical Performance of Li ₄ Ti ₅ O ₁₂ Anode through Confinement into Ordered Bimodal Porous Carbon Frameworks. Journal of Physical Chemistry C, 2013, 117, 26889-26895.	3.1	16
119	Dynamical Perturbations of Tetrahydroborate Anions in LiBH ₄ due to Nanoconfinement in Controlled-Pore Carbon Scaffolds. Journal of Physical Chemistry C, 2013, 117, 17983-17995.	3.1	47
120	Tailoring the hydrogen storage properties of Li4BN3H10 by confinement into highly ordered nanoporous carbon. Journal of Materials Chemistry A, 2013, 1, 3926.	10.3	16
121	Study of the structures and thermal expansion properties of solid solutions Yb2â^'xDyxW3O12 (0â‰氣â‰車.5) Tj	ETQq1 1 (0.784314 rg
122	Ti-doped LiAlH4 for hydrogen storage: Rehydrogenation process, reaction conditions and microstructure evolution during cycling. International Journal of Hydrogen Energy, 2012, 37, 10215-10221.	7.1	23
123	Facile Shape Control of Co ₃ O ₄ and the Effect of the Crystal Plane on Electrochemical Performance. Advanced Materials, 2012, 24, 5762-5766.	21.0	378
124	LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Research, 2012, 5, 395-401.	10.4	69
125	Systematic Pore-Size Effects of Nanoconfinement of LiBH ₄ : Elimination of Diborane Release and Tunable Behavior for Hydrogen Storage Applications. Chemistry of Materials, 2011, 23, 1331-1336.	6.7	139
126	First-Principles Study of Novel Conversion Reactions for High-Capacity Li-Ion Battery Anodes in the Li–Mg–B–N–H System. Journal of Physical Chemistry C, 2011, 115, 16681-16687.	3.1	21

#	Article	IF	CITATIONS
127	Ti-Doped LiAlH ₄ for Hydrogen Storage: Synthesis, Catalyst Loading and Cycling Performance. Journal of the American Chemical Society, 2011, 133, 15593-15597.	13.7	77
128	Modification of the H ₂ Desorption Properties of LiAlH ₄ through Doping with Ti. Journal of Physical Chemistry C, 2010, 114, 10666-10669.	3.1	54
129	Controlling the Decomposition Pathway of LiBH ₄ via Confinement in Highly Ordered Nanoporous Carbon. Journal of Physical Chemistry C, 2010, 114, 14036-14041.	3.1	123
130	Hydrogenation of C14 Laves phase alloy: CaLi2. International Journal of Hydrogen Energy, 2009, 34, 1472-1475.	7.1	15
131	Hydrogenation of CaLi2â^'xMgx (0â‰⊠â‰월) with C14 Laves phase structure. Journal of Alloys and Compounds, 2009, 482, L18-L21.	5.5	10
132	Facile Cycling of Ti-Doped LiAlH ₄ for High Performance Hydrogen Storage. Journal of the American Chemical Society, 2009, 131, 5032-5033.	13.7	96
133	Structure and magnetic properties of Nd3â^'xDyxFe23â^'yCo6Moy (x=0.5â€"3) compounds. Solid State Sciences, 2008, 10, 1412-1415.	3.2	1
134	Tuning Bulk O2 and Nonbonding Oxygen State for Reversible Anionic Redox Chemistry in P2‣ayered Cathodes. Angewandte Chemie, 0, , .	2.0	2