
Lassi Klemettinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2219075/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Recovering Value from End-of-Life Batteries by Integrating Froth Flotation and Pyrometallurgical Copper-Slag Cleaning. Metals, 2022, 12, 15.	1.0	8
2	Distribution of Co, Fe, Ni, and precious metals between blister copper and white metal. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, 2021, 130, 313-323.	0.1	1
3	Iron activity measurements and spinel-slag equilibria in alumina-bearing iron silicate slags. Journal of Alloys and Compounds, 2021, 855, 157539.	2.8	4
4	Reaction mechanisms of waste printed circuit board recycling in copper smelting: The impurity elements. Minerals Engineering, 2021, 160, 106709.	1.8	12
5	Precious Metal Distributions Between Copper Matte and Slag at High \$\$ P_{{{ext{SO}}_{ 2 }} \$\$ in WEEE Reprocessing. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 871-882.	1.0	14
6	Solubility of Palladium in Alumina-Iron Silicate Melts. Jom, 2021, 73, 1871-1877.	0.9	1
7	On the Kinetic Behavior of Recycling Precious Metals (Au, Ag, Pt, and Pd) Through Copper Smelting Process. Journal of Sustainable Metallurgy, 2021, 7, 920-931.	1.1	9
8	Feasibility study of producing multi-metal parts by Fused Filament Fabrication (FFF) technique. Journal of Manufacturing Processes, 2021, 67, 438-446.	2.8	31
9	Worth from Waste: Utilizing a Graphite-Rich Fraction from Spent Lithium-Ion Batteries as Alternative Reductant in Nickel Slag Cleaning. Minerals (Basel, Switzerland), 2021, 11, 784.	0.8	8
10	Ni–Fe–Co alloy – magnesia-iron-silicate slag equilibria and the behavior of minor elements Cu and P in nickel slag cleaning. Journal of Materials Research and Technology, 2021, 15, 719-730.	2.6	5
11	Handling trace elements in WEEE recycling through copper smelting-an experimental and thermodynamic study. Minerals Engineering, 2021, 173, 107189.	1.8	12
12	Slag Chemistry and Behavior of Nickel and Tin in Black Copper Smelting with Alumina and Magnesia-Containing Slags. Journal of Sustainable Metallurgy, 2021, 7, 1-14.	1.1	12
13	Leaching of Rare Earth Elements from NdFeB Magnets without Mechanical Pretreatment by Sulfuric (H2SO4) and Hydrochloric (HCl) Acids. Minerals (Basel, Switzerland), 2021, 11, 1374.	0.8	13
14	Precious metal recoveries in secondary copper smelting with high-alumina slags. Journal of Material Cycles and Waste Management, 2020, 22, 642-655.	1.6	22
15	Control of Platinum Loss in WEEE Smelting. Jom, 2020, 72, 2770-2777.	0.9	6
16	Equilibrium phase relations of CaO–SiO2–TiO2 system at 1400°C and oxygen partial pressure of 10â^'10Âatm. Journal of Alloys and Compounds, 2020, 847, 156472.	2.8	21
17	Equilibrium of Copper Matte and Silica-Saturated Iron Silicate Slags at 1300°C and \$\$ P_{{{ext{SO}}_{ 2 }} }\$ of 0.5 atm. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 2107-2118.	1.0	13
18	Battery Scrap and Biochar Utilization for Improved Metal Recoveries in Nickel Slag Cleaning Conditions. Batteries, 2020, 6, 58.	2.1	8

#	Article	IF	CITATIONS
19	Behavior of Battery Metals Lithium, Cobalt, Manganese and Lanthanum in Black Copper Smelting. Batteries, 2020, 6, 16.	2.1	15
20	Integrated Battery Scrap Recycling and Nickel Slag Cleaning with Methane Reduction. Minerals (Basel,) Tj ETQq(0 0 8 ggBT	/Overlock 10
21	Recovery of Precious Metals (Au, Ag, Pt, and Pd) from Urban Mining Through Copper Smelting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1495-1508.	1.0	28
22	Experimental Study on the Phase Equilibrium of Copper Matte and Silica-Saturated FeOx-SiO2-Based Slags in Pyrometallurgical WEEE Processing. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1552-1563.	1.0	18
23	Recycling of tellurium via copper smelting processes. SN Applied Sciences, 2020, 2, 1.	1.5	10
24	Distribution Kinetics of Rare Earth Elements in Copper Smelting. Sustainability, 2020, 12, 208.	1.6	8
25	Trace element distributions between matte and slag in direct nickel matte smelting. Canadian Metallurgical Quarterly, 2020, 59, 67-77.	0.4	4
26	Critical Metals Ga, Ge and In: Experimental Evidence for Smelter Recovery Improvements. Minerals (Basel, Switzerland), 2019, 9, 367.	0.8	9
27	Behavior of Ga, In, Sn, and Te in Copper Matte Smelting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 2723-2732.	1.0	24
28	Slag Cleaning Equilibria in Iron Silicate Slag–Copper Systems. Journal of Sustainable Metallurgy, 2019, 5, 463-473.	1.1	11
29	Sulfation Roasting Mechanism for Spent Lithium-Ion Battery Metal Oxides Under SO2-O2-Ar Atmosphere. Jom, 2019, 71, 4473-4482.	0.9	53
30	Distribution of Ni, Co, Precious, and Platinum Group Metals in Copper Making Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 1752-1765.	1.0	24
31	Behavior of Tin and Antimony in Secondary Copper Smelting Process. Minerals (Basel, Switzerland), 2019, 9, 39.	0.8	28
32	Urban mining of precious metals via oxidizing copper smelting. Minerals Engineering, 2019, 133, 95-102.	1.8	34
33	Properties of Na ₂ O–SiO ₂ slags in Doré smelting. Mineral Processing and Extractive Metallurgy Review, 2018, 39, 125-135.	2.6	3
34	Precious Metal Distributions in Direct Nickel Matte Smelting with Low-Cu Mattes. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 98-112.	1.0	20
35	Thermal Processing of Jarosite Leach Residue for a Safe Disposable Slag and Valuable Metals Recovery. Metals, 2018, 8, 744.	1.0	28

³⁶Behavior of Waste Printed Circuit Board (WPCB) Materials in the Copper Matte Smelting Process.
Metals, 2018, 8, 887.1.025

#	Article	IF	CITATIONS
37	Behavior of Nickel as a Trace Element and Time-Dependent Formation of Spinels in WEEE Smelting. Minerals, Metals and Materials Series, 2018, , 1073-1082.	0.3	6
38	Slag Chemistry of High-Alumina Iron Silicate Slags at 1300°C in WEEE Smelting. Journal of Sustainable Metallurgy, 2017, 3, 772-781.	1.1	29
39	Experimental phase equilibrium data of the system Cu–O–CaO–Al2O3 at copper saturation. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2016, 55, 199-207.	0.7	3