Marek Gliński

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2218154/publications.pdf Version: 2024-02-01

MADER CILL SKI

#	Article	IF	CITATIONS
1	Reducibility Studies of Ceria, Ce0.85Zr0.15O2 (CZ) and Au/CZ Catalysts after Alkali Ion Doping: Impact on Activity in Oxidation of NO and CO. Catalysts, 2022, 12, 524.	1.6	4
2	Catalytic ketonization of propionic acid. Green chemistry in practice. Journal of Flow Chemistry, 2021, 11, 87-90.	1.2	0
3	Highly Selective Vapor and Liquid Phase Transfer Hydrogenation of Diaryl and Polycyclic Ketones with Secondary Alcohols in the Presence of Magnesium Oxide as Catalyst. Catalysts, 2021, 11, 574.	1.6	3
4	Activity of Ag/CeZrO2, Ag+K/CeZrO2, and Ag-Au+K/CeZrO2 Systems for Lean Burn Exhaust Clean-Up. Catalysts, 2021, 11, 1041.	1.6	3
5	Catalytic Activity of High-Surface-Area Amorphous MgO Obtained from Upsalite. Catalysts, 2021, 11, 1338.	1.6	2
6	Application of Potassium Ion Deposition in Determining the Impact of Support Reducibility on Catalytic Activity of Au/Ceria-Zirconia Catalysts in CO Oxidation, NO Oxidation, and C3H8 Combustion. Catalysts, 2020, 10, 688.	1.6	6
7	Acid strength measurements of Amberlyst 15 resin, p-xylene-2-sulfonic acid and chlorosulfonic and sulfuric acid treated SiO2, Al2O3, TiO2 and MgO. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 1081-1096.	0.8	10
8	Diacetone alcohol decomposition and benzaldehyde Cannizzaro reaction as test reactions for the basic strength measurements of alumina, magnesia, Amberlyst type resins (A-15, XN 1010, A-26, A-21), Nafion NR 50 and solid sulfuric acid. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 199-217.	0.8	3
9	Description of the structure-chemoselectivity relationship in the transfer hydrogenation of α,β-unsaturated aldehydes and ketones with alcohols in the presence of magnesium oxide. Applied Catalysis A: General, 2018, 554, 117-124.	2.2	6
10	Application of Thermal Analysis in Determining Properties of Herbaceous Materials. Journal of Chemical Education, 2018, 95, 1359-1364.	1.1	6
11	Magnesium oxide modified with various iodine-containing compoundsSurface studies. Surface and Interface Analysis, 2017, 49, 945-952.	0.8	3
12	Application of Heterogeneous Copper Catalyst in a Continuous Flow Process: Dehydrogenation of Cyclohexanol. Journal of Chemical Education, 2016, 93, 1623-1625.	1.1	12
13	Excess Enthalpies in Binary Systems of Isomeric C8 Aliphatic Monoethers with Acetonitrile and Their Description by the COSMO-SAC Model. Journal of Chemical & Engineering Data, 2016, 61, 996-1002.	1.0	1
14	Vapour phase transfer hydrogenation of α,β-unsaturated carbonyl compounds. Thermodynamic and experimental studies. Applied Catalysis A: General, 2016, 511, 131-140.	2.2	4
15	Surface studies of magnesium oxideâ€based catalysts modified with X ₂ or MgX ₂ (X = Br, I). Surface and Interface Analysis, 2015, 47, 1001-1008.	0.8	4
16	(Liquid + liquid) equilibrium in binary systems of isomeric C8 aliphatic monoethers with acetonitrile and its interpretation by the COSMO-SAC model. Journal of Chemical Thermodynamics, 2015, 85, 42-48.	1.0	5
17	Catalytic hydrogen transfer over magnesia. Part XXV. Liquid and vapor phase reduction of ketoesters. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114, 279-294.	0.8	2
18	Liquid–liquid equilibrium in binary systems of isomeric C8 aliphatic monoethers with nitromethane. Fluid Phase Equilibria, 2013, 356, 271-276.	1.4	11

Marek Gliński

#	Article	IF	CITATIONS
19	Reaction of iodine with metal oxides. Canadian Journal of Chemistry, 2011, 89, 1370-1374.	0.6	12
20	Reactivity of Alcohols in Chemoselective Transfer Hydrogenation of Acrolein over Magnesium Oxide as the Catalyst. Catalysis Letters, 2011, 141, 293-299.	1.4	23
21	Structure–reactivity relationship in transfer hydrogenation of aliphatic ketones over magnesium oxide. Reaction Kinetics and Catalysis Letters, 2009, 97, 275-279.	0.6	7
22	Highly diastereoselective transfer hydrogenation of 4-t-butylcyclohexanone in the presence of magnesium oxide. Reaction Kinetics, Mechanisms and Catalysis, 2009, 99, 93.	0.8	1
23	Antimicrobial Activity of Undecan-2-one, Undecan-2-ol and Their Derivatives. Journal of Essential Oil-bearing Plants: JEOP, 2009, 12, 605-614.	0.7	9
24	Liquid phase hydrogen transfer to cyclopentanone over MgO-I2 and MgO-RI catalysts. Reaction Kinetics and Catalysis Letters, 2008, 95, 107-112.	0.6	4
25	Conformation of hydrogen-bonded dimerico-methyl-substituted benzoic acids. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, o208-o210.	0.4	Ο
26	Olfactory properties of straight-chain undecan-x-ones, undecan-x-ols (xÂ=Â2–6) and their derivatives. Flavour and Fragrance Journal, 2008, 23, 147-151.	1.2	1
27	Catalytic hydrogen transfer over magnesia. Applied Catalysis A: General, 2008, 349, 133-139.	2.2	27
28	Study of the Effect of 3-Undecanone and 3-Undecanol on Cellular and Humoral Immunity in Mice. Journal of Essential Oil Research, 2008, 20, 282-286.	1.3	0
29	Hydrogen-bonded networks in 1-(4-methoxyphenyl)-2,2-dimethylpropan-1-ol. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o720-o722.	0.4	1
30	Synthesis and olfactory properties of 2-alkylalkanals, analogues of 2-methylundecanal. Flavour and Fragrance Journal, 2006, 21, 480-483.	1.2	6
31	Catalytic ketonization over oxide catalysts. Applied Catalysis A: General, 2005, 281, 107-113.	2.2	33
32	Catalytic ketonisation over oxide catalysts. Reaction Kinetics and Catalysis Letters, 2004, 82, 157-163.	0.6	8
33	Title is missing!. Reaction Kinetics and Catalysis Letters, 2003, 78, 19-24.	0.6	5
34	The factors controlling the reaction of (2,4,6-triisopropylphenyl) methyl ketone with Ph3Al and structure of [Ph2AlO(2,4,6-tri-iPr-C6H2)Cr̃CH2]2. Journal of Organometallic Chemistry, 2002, 664, 136-141.	0.8	9
35	Title is missing!. Reaction Kinetics and Catalysis Letters, 2002, 77, 335-340.	0.6	7
36	Catalytic Hydrogen Transfer over Magnesia, xv. Preliminary Studies of Active Centers of Catalysts. Reaction Kinetics and Catalysis Letters, 2001, 72, 133-137.	0.6	6

Marek Gliński

#	Article	IF	CITATIONS
37	CATALYTIC HYDROGEN TRANSFER OVER MAGNESIA, XVII. a HYDROCARBONS AS HYDROGEN DONORS. Reaction Kinetics and Catalysis Letters, 2001, 73, 21-26.	0.6	5
38	Synthesis of Six-Membered Cyclic Carbonate Monomers by Disproportionation of 1,3-Bis(alkoxycarbonyloxy)propanes and Their Polymerization. Polymer Journal, 2000, 32, 381-390.	1.3	25
39	Decarboxylative coupling of heptanoic acid. Manganese, cerium and zirconium oxides as catalysts. Applied Catalysis A: General, 2000, 190, 87-91.	2.2	35
40	Catalytic Ketonization of Carboxylic Acids Synthesis of Saturated and Unsaturated Ketones. Reaction Kinetics and Catalysis Letters, 2000, 69, 123-128.	0.6	28
41	Catalytic Ketonization over Oxide Catalysts, Part IV. Cycloketonization of Diethyl Hexanodiate. Reaction Kinetics and Catalysis Letters, 2000, 70, 271-274.	0.6	16
42	Catalytic hydrogen transfer over magnesia, IXa. reduction of long chain aliphatic ketones by 2-propanol. Reaction Kinetics and Catalysis Letters, 1998, 65, 121-129.	0.6	12
43	Monolayer vanadia catalysts from vanadium alkoxide precursors. Study of reactivity of various R3VO4. Applied Catalysis A: General, 1997, 164, 205-209.	2.2	3
44	The direct synthesis of alkenylaromatics during catalytic transfer reduction (CTR) of aralkyl ketones with isopropyl alcohol over MgO of enhanced acidity. Applied Catalysis A: General, 1997, 150, 77-84.	2.2	8
45	Reduction of alkyl alkyl, aryl alkyl and cyclic ketones by catalytic hydrogen transfer over magnesium oxide. Journal of the Chemical Society Perkin Transactions II, 1991, , 1695-1698.	0.9	29
46	The carbon monoxide hydrogenation over superbasic and superbase-ferrous metal bifunctional catalysts. Journal of Molecular Catalysis, 1984, 25, 227-239.	1.2	5