Patrick L Sheets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2217436/publications.pdf

Version: 2024-02-01

29 2,011 20 29
papers citations h-index g-index

30 30 30 2681 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain, 2007, 131, 243-257.	4.2	402
2	Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex. Nature Neuroscience, 2010, 13, 739-744.	14.8	239
3	Differential Block of Sensory Neuronal Voltage-Gated Sodium Channels by Lacosamide [(2 <i>R</i>)-2-(Acetylamino)- <i>N</i> -benzyl-3-methoxypropanamide], Lidocaine, and Carbamazepine. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 89-99.	2.5	177
4	A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity. Journal of Physiology, 2007, 581, 1019-1031.	2.9	158
5	Corticospinal-specific HCN expression in mouse motor cortex: <i>I</i> _h -dependent synaptic integration as a candidate microcircuit mechanism involved in motor control. Journal of Neurophysiology, 2011, 106, 2216-2231.	1.8	112
6	Altered Excitability and Local Connectivity of mPFC-PAG Neurons in a Mouse Model of Neuropathic Pain. Journal of Neuroscience, 2018, 38, 4829-4839.	3.6	104
7	Paroxysmal extreme pain disorder mutations within the D3/S4–S5 linker of Nav1.7 cause moderate destabilization of fast inactivation. Journal of Physiology, 2008, 586, 4137-4153.	2.9	77
8	Specific Targeting of the Basolateral Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex. ENeuro, 2016, 3, ENEURO.0002-16.2016.	1.9	76
9	The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain. Journal of Physiology, 2018, 596, 6289-6305.	2.9	72
10	eGFP Expression under <i>UCHL1</i> Promoter Genetically Labels Corticospinal Motor Neurons and a Subpopulation of Degeneration-Resistant Spinal Motor Neurons in an ALS Mouse Model. Journal of Neuroscience, 2013, 33, 7890-7904.	3.6	69
11	Local-circuit phenotypes of layer 5 neurons in motor-frontal cortex of YFP-H mice. Frontiers in Neural Circuits, 2008, 2, 6.	2.8	67
12	Benzene metabolism in human lung cell lines BEAS-2B and A549 and cells overexpressing CYP2F1. Journal of Biochemical and Molecular Toxicology, 2004, 18, 92-99.	3.0	54
13	KBâ€R7943, an inhibitor of the reverse Na ⁺ /Ca ²⁺ exchanger, blocks Nâ€methylâ€Dâ€aspartate receptor and inhibits mitochondrial complex I. British Journal of Pharmacology, 2011, 162, 255-270.	5.4	50
14	Lidocaine reduces the transition to slow inactivation in Na _v 1.7 voltageâ€gated sodium channels. British Journal of Pharmacology, 2011, 164, 719-730.	5.4	45
15	Delayed calcium dysregulation in neurons requires both the NMDA receptor and the reverse Na+/Ca2+ exchanger. Neurobiology of Disease, 2012, 46, 109-117.	4.4	45
16	Tlx3 exerts context-dependent transcriptional regulation and promotes neuronal differentiation from embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5780-5785.	7.1	36
17	Highly differentiated cellular and circuit properties of infralimbic pyramidal neurons projecting to the periaqueductal gray and amygdala. Frontiers in Cellular Neuroscience, 2015, 9, 161.	3.7	34
18	Prenatal methadone exposure disrupts behavioral development and alters motor neuron intrinsic properties and local circuitry. ELife, $2021,10,10$	6.0	32

#	Article	IF	CITATION
19	Sex-Specific Disruption of Distinct mPFC Inhibitory Neurons in Spared-Nerve Injury Model of Neuropathic Pain. Cell Reports, 2020, 31, 107729.	6.4	31
20	Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala. Pain, 2020, 161, 166-176.	4.2	29
21	Systemic Platelet Dysfunction Is the Result of Local Dysregulated Coagulation and Platelet Activation in the Brain in a Rat Model of Isolated Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 1672-1675.	3.4	25
22	Peripheral nerve injury reduces the excitation-inhibition balance of basolateral amygdala inputs to prelimbic pyramidal neurons projecting to the periaqueductal gray. Molecular Brain, 2020, 13, 100.	2.6	16
23	Inhibition of Nav1.7 and Nav1.4 Sodium Channels by Trifluoperazine Involves the Local Anesthetic Receptor. Journal of Neurophysiology, 2006, 96, 1848-1859.	1.8	14
24	Gpr17 deficiency in POMC neurons ameliorates the metabolic derangements caused by long-term high-fat diet feeding. Nutrition and Diabetes, 2019, 9, 29.	3.2	14
25	The Electrophysiological Determinants of Corticospinal Motor Neuron Vulnerability in ALS. Frontiers in Molecular Neuroscience, 2020, 13, 73.	2.9	11
26	Cortical Circuits for Motor Control. Neuropsychopharmacology, 2011, 36, 365-366.	5.4	7
27	Probing NMDA receptor GluN2A and GluN2B subunit expression and distribution in cortical neurons. Neuropharmacology, 2014, 79, 542-549.	4.1	7
28	Sphingosine-1-phosphate receptor 1 agonist SEW2871 alters membrane properties of late-firing somatostatin expressing neurons in the central lateral amygdala. Neuropharmacology, 2022, 203, 108885.	4.1	4
29	Topographic organization underlies intrinsic and morphological heterogeneity of central amygdala neurons expressing corticotropinâ€releasing hormone. Journal of Comparative Neurology, 2022, 530,	1.6	4