
Yoshiyuki Nishio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2217353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Material Functionalization of Cellulose and Related Polysaccharides via Diverse Microcompositions. Advances in Polymer Science, 2006, , 97-151.	0.4	121
2	Phosphorylated cellulose propionate derivatives as thermoplastic flame resistant/retardant materials: influence of regioselective phosphorylation on their thermal degradation behaviour. Cellulose, 2010, 17, 963-976.	2.4	77
3	Miscibility and orientation behavior of poly(vinyl alcohol) / poly(vinyl pyrrolidone) blends. Journal of Polymer Science, Part B: Polymer Physics, 1990, 28, 355-376.	2.4	76
4	Plasticization of cellulose diacetate by graft copolymerization of ?-caprolactone and lactic acid. Journal of Applied Polymer Science, 2002, 84, 2621-2628.	1.3	65
5	Cellulose alkyl ester/poly(ε-caprolactone) blends: characterization of miscibility and crystallization behaviour. Cellulose, 2008, 15, 1-16.	2.4	61
6	Cellulose Acetate-graft-Poly(hydroxyalkanoate)s: Synthesis and Dependence of the Thermal Properties on Copolymer Composition. Macromolecular Chemistry and Physics, 2004, 205, 1904-1915.	1.1	59
7	Title is missing!. Cellulose, 1997, 4, 131-145.	2.4	56
8	Miscibility of cellulose acetate with vinyl polymers. Cellulose, 2002, 9, 215-223.	2.4	56
9	Structural characteristics and moisture sorption behavior of nylon-6/clay hybrid films. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 479-487.	2.4	52
10	Molecular Orientation and Optical Anisotropy in Drawn Films of Miscible Blends Composed of Cellulose Acetate and Poly(N-vinylpyrrolidone-co-methyl methacrylate). Macromolecules, 2007, 40, 3468-3476.	2.2	40
11	Different orientation patterns of cellulose nanocrystal films prepared from aqueous suspensions by shearing under evaporation. Cellulose, 2015, 22, 2983-2992.	2.4	33
12	Synthesis, Characterization, and Gas Permeation Properties of Silylated Derivatives of Ethyl Cellulose. Macromolecules, 2006, 39, 6025-6030.	2.2	32
13	Molecular Structure and Liquid-Crystalline Characteristics of Chitosan Phenylcarbamate. Biomacromolecules, 2009, 10, 166-173.	2.6	32
14	Calcium Phosphate Mineralization in Cellulose Derivative/Poly(acrylic acid) Composites Having a Chiral Nematic Mesomorphic Structure. Biomacromolecules, 2015, 16, 3959-3969.	2.6	32
15	Interaction and Scale of Mixing in Cellulose Acetate/Poly(N-vinyl Pyrrolidone-co-vinyl Acetate) Blends. Cellulose, 2005, 12, 281-291.	2.4	31
16	Estimation of Miscibility and Interaction for Cellulose Acetate and Butyrate Blends withN-Vinylpyrrolidone Copolymers. Macromolecular Chemistry and Physics, 2007, 208, 622-634.	1.1	27
17	Orientation and Birefringence Compensation of Trunk and Graft Chains in Drawn Films of Cellulose Acetate- <i>graft</i> -PMMA Synthesized by ATRP. Macromolecules, 2013, 46, 3074-3083.	2.2	27
18	Liquid Crystals of Cellulosics: Fascinating Ordered Structures for the Design of Functional Material Systems, Advances in Polymer Science, 2015, 241-286.	0.4	26

Үознічикі Мізніо

#	Article	IF	CITATIONS
19	Structural Investigations of Liquid-Crystalline Ethylcellulose. Polymer Journal, 1985, 17, 753-760.	1.3	24
20	Cellulose alkyl ester/vinyl polymer blends: effects of butyryl substitution and intramolecular copolymer composition on the miscibility. Cellulose, 2006, 13, 245-259.	2.4	24
21	Synthesis of Novel Fluorescent Cellulose Derivatives and Their Applications in Detection of Nitroaromatic Compounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 1436-1445.	3.2	24
22	Crystallization Behavior of Poly(<i>ε</i> aprolactone) Grafted onto Cellulose Alkyl Esters: Effects of Copolymer Composition and Intercomponent Miscibility. Macromolecular Chemistry and Physics, 2008, 209, 2135-2146.	1.1	22
23	Rapid Benzylation of Cellulose in Tetra- <i>n</i> -butylphosphonium Hydroxide Aqueous Solution at Room Temperature. ACS Sustainable Chemistry and Engineering, 2017, 5, 4505-4510.	3.2	22
24	TEMPO-oxidized cellulose nanofiber-reinforced lignin based polyester films as a separator for electric double-layer capacitor. Cellulose, 2019, 26, 569-580.	2.4	22
25	Synthesis of biopolyols by mild oxypropylation of liquefied starch and its application to polyurethane rigid foams. Journal of Applied Polymer Science, 2013, 130, 622-630.	1.3	21
26	Fabrication of thermoplastic ductile films of chitin butyrate/poly(É›-caprolactone) blends and their cytocompatibility. Carbohydrate Polymers, 2014, 114, 330-338.	5.1	20
27	Addition effects of imidazolium salts on mesophase structure and optical properties of concentrated hydroxypropyl cellulose aqueous solutions. Polymer Journal, 2010, 42, 232-241.	1.3	19
28	Calcium carbonate mineralization in chiral mesomorphic order-retaining ethyl cellulose/poly(acrylic) Tj ETQq0 0) rgBT /Ον 1.8	erlock 10 Tf 5
29	Crystallization behavior of poly(ethylene oxide) in its blends with cellulose Journal of Fiber Science and Technology, 1990, 46, 441-446.	0.0	19
30	Molecular orientation and optical anisotropy in drawn films of cellulose diacetate-graft-PLLA: comparative investigation with poly(vinyl acetate-co-vinyl alcohol)-graft-PLLA. Cellulose, 2011, 18, 539-553.	2.4	17
31	Water-soluble polymer blends with partially deacetylated chitin: A miscibility characterization. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1533-1538.	2.4	15
32	Improvement of dielectric properties of cyanoethyl cellulose via esterification and film stretching. Cellulose, 2016, 23, 765-777.	2.4	15
33	Thermotropic liquid crystalline properties of (hydroxypropyl)cellulose derivatives with butyryl and heptafluorobutyryl substituents. Cellulose, 2019, 26, 399-412.	2.4	14
34	Synthesis and properties of amino acid esters of hydroxypropyl cellulose. Journal of Polymer Science Part A, 2008, 46, 2326-2334.	2.5	12
35	Cellulose acetate/poly(methyl methacrylate) interpenetrating networks: synthesis and estimation of thermal and mechanical properties. Cellulose, 2011, 18, 1441-1454.	2.4	12
36	Chiroptical properties of cholesteric liquid crystals of chitosan phenylcarbamate in ionic liquids. Polymer Journal, 2014, 46, 559-567.	1.3	12

#	Article	IF	CITATIONS
37	Producing a magnetically anisotropic soft material: synthesis of iron oxide nanoparticles in a carrageenan/PVA matrix and stretching of the hybrid gelatinous bulk. Polymer Journal, 2018, 50, 251-260.	1.3	12
38	Development of Lignin-Based Terpolyester Film and Its Application to Separator Material for Electric Double-Layer Capacitor. Journal of Wood Chemistry and Technology, 2019, 39, 198-213.	0.9	12
39	Preparation and Miscibility Characterization of Chitin/Poly(N-vinyl pyrrolidone) Blends Journal of Fiber Science and Technology, 1995, 51, 396-399.	0.0	12
40	Regioselectivity in Acetylation of Cellulose in Ionic Liquids. ChemistrySelect, 2016, 1, 2474-2478.	0.7	11
41	Nanoincorporation of iron oxides into carrageenan gels and magnetometric and morphological characterizations of the composite products. Polymer Journal, 2013, 45, 824-833.	1.3	10
42	Liquid-crystalline characteristics of cellulose derivatives: Binary and ternary mixtures of ethyl cellulose, hydroxypropyl cellulose, and acrylic acid. Journal of Macromolecular Science - Physics, 1991, 30, 357-384.	0.4	9
43	Phase study of nylon 6/poly (acrylic acid) blends cast from solutions in aqueous formic acid. Polymer International, 1993, 31, 15-23.	1.6	9
44	Preparation of Thermoplastic Magnetic Wood via Etherification and <i>In-Situ</i> Synthesis of Iron Oxide. Journal of Wood Chemistry and Technology, 2010, 30, 373-381.	0.9	9
45	Cellulose propionate/poly(N-vinyl pyrrolidone-co-vinyl acetate) blends: dependence of the miscibility on propionyl DS and copolymer composition. Cellulose, 2013, 20, 239-252.	2.4	9
46	Synthesis of Hydroxypropyl Derivatives of Chitin and Chitosan and Observation of Phase Behavior of Their Aqueous Solutions Journal of Fiber Science and Technology, 2000, 56, 435-442.	0.0	8
47	Amino acidâ€functionalized ethyl cellulose: Synthesis, characterization, and gas permeation properties. Journal of Polymer Science Part A, 2010, 48, 3986-3993.	2.5	8
48	Rapid allylation of cellulose without heating in tetra-n-butylphosphonium hydroxide aqueous solution. Cellulose, 2020, 27, 6887-6896.	2.4	8
49	Enthalpy Relaxation Behavior of Liquid-Crystalline Glasses of an Esterified Cholesterol Derivative and its Complex Salts with Aliphatic Amines. Molecular Crystals and Liquid Crystals, 2001, 357, 27-42.	0.3	7
50	Preparation and chiroptical properties of cellulose chlorophenylcarbamate–silica hybrids having a chiral nematic mesomorphic structure. Polymer, 2019, 173, 172-181.	1.8	7
51	Synthesis of Hydroxypropyl Derivatives of Chitosan and Observation of Phase Behavior of their Aqueous Solutions. Journal of Fiber Science and Technology, 1999, 55, 28-33.	0.0	6
52	Synthesis of <i>O</i> â€(2,3â€dihydroxypropyl) cellulose in NaOH/urea aqueous solution: As a precursor for introducing "necklaceâ€like―structure. Journal of Polymer Science Part A, 2013, 51, 3590-3597.	2.5	6
53	CaCO3 mineralization in polymer composites with cellulose nanocrystals providing a chiral nematic mesomorphic structure. International Journal of Biological Macromolecules, 2019, 141, 783-791.	3.6	6
54	Handedness Inversion in Chiral Nematic (Ethyl)cellulose Solutions: Effects of Substituents and Temperature. Macromolecules, 2021, 54, 6014-6027.	2.2	6

Үознічикі Мізніо

#	Article	IF	CITATIONS
55	Spectroscopic Studies on the Molecular Interactions in Chitin/Poly(vinyl alcohol) Blends Journal of Fiber Science and Technology, 1997, 53, 409-411.	0.0	5
56	Thermal and Mechanical Properties of Collagen/Poly (vinyl alcohol) and Chitosan/Poly (vinyl) Tj ETQq0 0 0 rgBT /O Technology, 1999, 55, 254-260.	verlock 10 0.0) Tf 50 707 1 5
57	Poly(vinyl pyrrolidoneâ€ <i>co</i> â€vinyl acetate)â€ <i>graft</i> â€poly(εâ€caprolactone) as a compatibilizer for cellulose acetate/poly(εâ€caprolactone) blends. Journal of Applied Polymer Science, 2009, 113, 2945-2954.	1.3	5
58	Synthesis and Structural Characterization of Phenylcarbamate Derivatives of Chitin and Chitosan. Kobunshi Ronbunshu, 2010, 67, 135-142.	0.2	5
59	Superparamagnetic IPN gels of carrageenan/PHEMA excelling in shape retention. Carbohydrate Polymers, 2017, 178, 1-7.	5.1	5
60	Scale of Homogeneous Mixing in Miscible Blends of Organosolv Lignin Esters with Poly(<i>Ϊμ</i> -caprolactone). Journal of Wood Chemistry and Technology, 2010, 30, 330-347.	0.9	4
61	Insight into miscibility behaviour of cellulose ester blends with N-vinyl pyrrolidone copolymers in terms of viscometric interaction parameters. Cellulose, 2015, 22, 2349-2363.	2.4	4
62	Cellulose Acetate. , 2015, , 339-347.		4
63	Glassy State and Glass Transition-Its Elucidation and New Applications. II. Determination of Glass Transition Temperature by Differential Scanning Calorimetry Kobunshi Ronbunshu, 1996, 53, 866-868.	0.2	3
64	Mesomorphic glass-forming ionic complexes composed of a cholesterol phthalate and 1-Cn-3-methylimidazolium: phase transition and enthalpy relaxation behavior. Polymer Journal, 2018, 50, 899-909.	1.3	2
65	Immobilization of the Cholesteric Structure Formed by Cellulose Phenylcarbamates and CaCO ₃ Mineralization in the Liquid-Crystalline Composite Films. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 452-458.	0.1	1
66	Thermal Transition Behavior of Liquid-Crystalline Cholesterol Derivative/Aliphatic Amine Complexes and Enthalpy Relaxation Characteristics in Their Glassy State. Kobunshi Ronbunshu, 2018, 75, 371-380.	0.2	0
		704214	

Addition Effect of Poly($\langle i \rangle N \langle i \rangle$ -Vinyl Pyrrolidone) on the Miscibility of Cellulose Acetate/Poly(Vinyl) Tj ETQq1 1 0.784314 rg BT /Overl