Aimin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/221728/publications.pdf

Version: 2024-02-01

			236833]	189801
	55	2,729	25		50
	papers	citations	h-index		g-index
Ī					
	56	56	56		3248
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	The Carotenoid Cleavage Dioxygenase Gene CCD7-B, at Large, Is Associated with Tillering in Common Wheat. Agriculture (Switzerland), 2022, 12, 306.	1.4	4
2	Whole-genome resequencing of the wheat A subgenome progenitor Triticum urartu provides insights into its demographic history and geographic adaptation. Plant Communications, 2022, , 100345.	3.6	1
3	A novel NAC family transcription factor <i>SPR</i> suppresses seed storage protein synthesis in wheat. Plant Biotechnology Journal, 2021, 19, 992-1007.	4.1	24
4	The MYB family transcription factor TuODORANT1 from Triticum urartu and the homolog TaODORANT1 from Triticum aestivum inhibit seed storage protein synthesis in wheat. Plant Biotechnology Journal, 2021, 19, 1863-1877.	4.1	15
5	Characterization of the Mitochondrial Genome of a Wheat AL-Type Male Sterility Line and the Candidate CMS Gene. International Journal of Molecular Sciences, 2021, 22, 6388.	1.8	5
6	Genetic Mapping of ms1s, a Recessive Gene for Male Sterility in Common Wheat. International Journal of Molecular Sciences, 2021, 22, 8541.	1.8	5
7	Wheat <i>FRIZZYPANICLE</i> activates <i>VERNALIZATION1â€A</i> and <i>HOMEOBOX4â€A</i> to regulate spike development in wheat. Plant Biotechnology Journal, 2021, 19, 1141-1154.	4.1	37
8	Genomeâ€wide identification of seed storage protein gene regulators in wheat through coexpression analysis. Plant Journal, 2021, 108, 1704-1720.	2.8	9
9	Combined Transcriptome and Proteome Analysis of Anthers of AL-type Cytoplasmic Male Sterile Line and Its Maintainer Line Reveals New Insights into Mechanism of Male Sterility in Common Wheat. Frontiers in Genetics, 2021, 12, 762332.	1.1	7
10	Enhancing Genetic Gain through Genomic Selection: From Livestock to Plants. Plant Communications, 2020, 1, 100005.	3.6	147
11	Natural variations in the promoter of <scp><i>Awn Length Inhibitor 1</i></scp> (<scp><i>ALIâ€4</i></scp>) are associated with awn elongation and grain length in common wheat. Plant Journal, 2020, 101, 1075-1090.	2.8	32
12	TaCKX gene family, at large, is associated with thousand-grain weight and plant height in common wheat. Theoretical and Applied Genetics, 2020, 133, 3151-3163.	1.8	5
13	<i>TubZIP28</i> , a novel bZIP family transcription factor from <i>Triticum urartu</i> , and <i>TabZIP28</i> , its homologue from <i>Triticum aestivum</i> , enhance starch synthesis in wheat. New Phytologist, 2020, 226, 1384-1398.	3.5	46
14	Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling. Journal of Experimental Botany, 2019, 70, 4671-4688.	2.4	19
15	A wheat dominant dwarfing line with <i>Rht12</i> , which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant Journal, 2019, 97, 887-900.	2.8	65
16	Genome-wide identification and expression analysis of new cytokinin metabolic genes in bread wheat (<i>Triticum aestivum</i> L.). Peerl, 2019, 7, e6300.	0.9	18
17	Mechanisms, origin and heredity of Glu-1Ay silencing in wheat evolution and domestication. Theoretical and Applied Genetics, 2018, 131, 1561-1575.	1.8	7
18	Low molecular weight glutenin subunit gene composition at Glu-D3 loci of Aegilops tauschii and common wheat and a further view of wheat evolution. Theoretical and Applied Genetics, 2018, 131, 2745-2763.	1.8	1

#	Article	IF	CITATIONS
19	A Genome-wide View of Transcriptome Dynamics During Early Spike Development in Bread Wheat. Scientific Reports, 2018, 8, 15338.	1.6	45
20	Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature, 2018, 557, 424-428.	13.7	354
21	Highâ€ŧhroughput mining of Eâ€genomeâ€specific <scp>SNP</scp> s for characterizing <i>Thinopyrum elongatum</i> introgressions in common wheat. Molecular Ecology Resources, 2017, 17, 1318-1329.	2.2	22
22	Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theoretical and Applied Genetics, 2017, 130, 1235-1252.	1.8	68
23	Development of an integrated linkage map of einkorn wheat and its application for QTL mapping and genome sequence anchoring. Theoretical and Applied Genetics, 2017, 130, 53-70.	1.8	30
24	Characterization of QTLs for Root Traits of Wheat Grown under Different Nitrogen and Phosphorus Supply Levels. Frontiers in Plant Science, 2017, 8, 2096.	1.7	50
25	Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu. BMC Plant Biology, 2017, 17, 112.	1.6	32
26	Diversity, distribution of Puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC Plant Biology, 2017, 17, 158.	1.6	28
27	TaFlo2-A1, an ortholog of rice Flo2, is associated with thousand grain weight in bread wheat (Triticum aestivum L.). BMC Plant Biology, 2017, 17, 164.	1.6	90
28	Molecular Characterization of Three GIBBERELLIN-INSENSITIVE DWARF2 Homologous Genes in Common Wheat. PLoS ONE, 2016, 11, e0157642.	1.1	16
29	Characterization and Genetic Analysis of a Novel Light-Dependent Lesion Mimic Mutant, lm3, Showing Adult-Plant Resistance to Powdery Mildew in Common Wheat. PLoS ONE, 2016, 11, e0155358.	1.1	29
30	Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu. PLoS ONE, 2015, 10, e0131559.	1.1	26
31	Dissecting and Enhancing the Contributions of High-Molecular-Weight Glutenin Subunits to Dough Functionality and Bread Quality. Molecular Plant, 2015, 8, 332-334.	3.9	32
32	Composition, variation, expression and evolution of low-molecular-weight glutenin subunit genes in Triticum urartu. BMC Plant Biology, 2015, 15, 68.	1.6	18
33	Dissecting and enhancing the contributions of high-molecular-weight glutenin subunits to dough functionality and bread quality. Molecular Plant, 2014, , .	3.9	1
34	Novel Natural Allelic Variations at the <i>Rhtâ€1</i> Loci in Wheat. Journal of Integrative Plant Biology, 2013, 55, 1026-1037.	4.1	41
35	Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496, 87-90.	13.7	700
36	Novel insights into the composition, variation, organization, and expression of the low-molecular-weight glutenin subunit gene family in common wheat. Journal of Experimental Botany, 2013, 64, 2027-2040.	2.4	39

#	Article	IF	CITATIONS
37	A wheat–Thinopyrum ponticum–rye trigeneric germplasm line with resistance to powdery mildew and stripe rust. Euphytica, 2012, 188, 199-207.	0.6	4
38	Isolation of a gibberellin-insensitive dwarfing gene, Rht-B1e, and development of an allele-specific PCR marker. Molecular Breeding, 2012, 30, 1443-1451.	1.0	24
39	Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat. BMC Plant Biology, 2012, 12, 243.	1.6	68
40	Major quantitative trait loci for seminal root morphology of wheat seedlings. Molecular Breeding, 2012, 30, 139-148.	1.0	123
41	Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 122, 1503-1516.	1.8	35
42	PCR-based isolation and identification of full-length low-molecular-weight glutenin subunit genes in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 123, 1293-1305.	1.8	21
43	Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line. BMC Genomics, 2011, 12, 163.	1.2	73
44	New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat. PLoS ONE, 2010, 5, e13548.	1.1	74
45	Dynamic changes in flag leaf angle contribute to high photosynthetic capacity. Science Bulletin, 2009, 54, 3045-3052.	1.7	6
46	Isolation of Six Novel Aquaporin Genes from Triticum aestivum L. and Functional Analysis of TaAQP6 in Water Redistribution. Plant Molecular Biology Reporter, 2008, 26, 32-45.	1.0	8
47	Identification of new T1BL.1RS translocation lines derived from wheat (Triticum aestivum L. cultivar) Tj ETQq $1\ 1$	0.784314 1.0	· rgBT /Overlo
48	Molecular and Functional Characterization of Sphingosine-1-Phosphate Lyase Homolog from Higher Plants. Journal of Integrative Plant Biology, 2007, 49, 323-335.	4.1	12
49	Genetic diversity of wheat gene pool of recurrent selection assessed by microsatellite markers and morphological traits. Euphytica, 2007, 155, 249-258.	0.6	23
50	Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum). Physiologia Plantarum, 2006, 127, 701-709.	2.6	92
51	Pattern analysis on grain yield performance of Chinese and CIMMYT spring wheat cultivars sown in China and CIMMYT. Euphytica, 2006, 147, 409-420.	0.6	23
52	Effects of stem structure and cell wall components on bending strength in wheat. Science Bulletin, 2006, 51, 815-823.	4.3	36
53	Isolation and characterisation of six putative wheat cell wall-associated kinases. Functional Plant Biology, 2006, 33, 811.	1.1	10
54	Allelic variation, sequence determination and microsatellite screening at the XGWM261 locus in Chinese hexaploid wheat (Triticum aestivum) varieties. Euphytica, 2005, 145, 103-112.	0.6	17

#	Article	IF	CITATIONS
55	Alien cytoplasm effects on phytosiderophore release in two spring wheats (Triticum aestivum L.). Genetic Resources and Crop Evolution, 2003, 50, 767-772.	0.8	7