Sara Snogerup Linse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2217166/publications.pdf

Version: 2024-02-01

276 papers 26,240 citations

76 h-index 7517 151 g-index

298 all docs

298 docs citations

times ranked

298

23053 citing authors

#	Article	IF	Citations
1	High-Efficiency Expression and Purification of DNAJB6b Based on the pH-Modulation of Solubility and Denaturant-Modulation of Size. Molecules, 2022, 27, 418.	3.8	3
2	A Palette of Fluorescent A $\hat{1}^2$ 42 Peptides Labelled at a Range of Surface-Exposed Sites. International Journal of Molecular Sciences, 2022, 23, 1655.	4.1	7
3	Comparing $\hat{l}\pm$ -Synuclein Fibrils Formed in the Absence and Presence of a Model Lipid Membrane: A Small and Wide-Angle X-Ray Scattering Study. , 2022, 1, .		5
4	Amyloid-Î ² peptide 37, 38 and 40 individually and cooperatively inhibit amyloid-Î ² 42 aggregation. Chemical Science, 2022, 13, 2423-2439.	7.4	20
5	¹ H detection and dynamic nuclear polarization–enhanced NMR of Aβ ₁₋₄₂ fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	24
6	An aggregation inhibitor specific to oligomeric intermediates of $A\hat{I}^2$ 42 derived from phage display libraries of stable, small proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121966119.	7.1	5
7	Expression, purification and characterisation of large quantities of recombinant human IAPP for mechanistic studies. Biophysical Chemistry, 2021, 269, 106511.	2.8	10
8	Calmodulin complexes with brain and muscle creatine kinase peptides. Current Research in Structural Biology, 2021, 3, 121-132.	2.2	5
9	Transient Lipid-Protein Structures and Selective Ganglioside Uptake During α-Synuclein-Lipid Co-aggregation. Frontiers in Cell and Developmental Biology, 2021, 9, 622764.	3.7	10
10	Guest-protein incorporation into solvent channels of a protein host crystal (hostal). Acta Crystallographica Section D: Structural Biology, 2021, 77, 471-485.	2.3	1
11	Charge Regulation during Amyloid Formation of \hat{l} ±-Synuclein. Journal of the American Chemical Society, 2021, 143, 7777-7791.	13.7	33
12	pHâ€Responsive Capsules with a Fibril Scaffold Shell Assembled from an Amyloidogenic Peptide. Small, 2021, 17, e2007188.	10.0	13
13	Cooperativity of α-Synuclein Binding to Lipid Membranes. ACS Chemical Neuroscience, 2021, 12, 2099-2109.	3.5	20
14	Mechanism of Secondary Nucleation at the Single Fibril Level from Direct Observations of A \hat{I}^2 42 Aggregation. Journal of the American Chemical Society, 2021, 143, 16621-16629.	13.7	38
15	Solubility of AÎ ² 40 peptide. Jcis Open, 2021, 4, 100024.	3.2	5
16	Chiral Selectivity of Secondary Nucleation in Amyloid Fibril Propagation. Angewandte Chemie - International Edition, 2021, 60, 24008-24011.	13.8	10
17	TowardÂthe equilibrium and kinetics of amyloid peptide self-assembly. Current Opinion in Structural Biology, 2021, 70, 87-98.	5.7	10
18	Purification and HDL-like particle formation of apolipoprotein A-I after co-expression with the EDDIE mutant of Npro autoprotease. Protein Expression and Purification, 2021, 187, 105946.	1.3	2

#	Article	IF	Citations
19	The unhappy chaperone. QRB Discovery, 2021, 2, .	1.6	10
20	A dopamine metabolite stabilizes neurotoxic amyloid- \hat{l}^2 oligomers. Communications Biology, 2021, 4, 19.	4.4	25
21	On the Cluster Formation of α-Synuclein Fibrils. Frontiers in Molecular Biosciences, 2021, 8, 768004.	3.5	2
22	The Bacterial Amyloids Phenol Soluble Modulins from Staphylococcus aureus Catalyze Alpha-Synuclein Aggregation. International Journal of Molecular Sciences, 2021, 22, 11594.	4.1	3
23	Surface-Catalyzed Secondary Nucleation Dominates the Generation of Toxic IAPP Aggregates. Frontiers in Molecular Biosciences, 2021, 8, 757425.	3.5	24
24	Proliferation of Tau 304–380 Fragment Aggregates through Autocatalytic Secondary Nucleation. ACS Chemical Neuroscience, 2021, 12, 4406-4415.	3.5	19
25	Amyloid \hat{l}^2 42 fibril structure based on small-angle scattering. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
26	Kinetic fingerprints differentiate the mechanisms of action of anti-A \hat{l}^2 antibodies. Nature Structural and Molecular Biology, 2020, 27, 1125-1133.	8.2	123
27	Benefits and constrains of covalency: the role of loop length in protein stability and ligand binding. Scientific Reports, 2020, 10, 20108.	3.3	3
28	On the Mechanism of Self-Assembly by a Hydrogel-Forming Peptide. Biomacromolecules, 2020, 21, 4781-4794.	5.4	26
29	Direct measurement of lipid membrane disruption connects kinetics and toxicity of $A\hat{l}^2$ 42 aggregation. Nature Structural and Molecular Biology, 2020, 27, 886-891.	8.2	38
30	A microfluidic strategy for the detection of membrane protein interactions. Lab on A Chip, 2020, 20, 3230-3238.	6.0	13
31	Thermodynamic and kinetic design principles for amyloid-aggregation inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24251-24257.	7.1	49
32	Anomalous Salt Dependence Reveals an Interplay of Attractive and Repulsive Electrostatic Interactions in α-synuclein Fibril Formation. QRB Discovery, 2020, 1, .	1.6	18
33	Kinetic diversity of amyloid oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12087-12094.	7.1	103
34	Identification of on- and off-pathway oligomers in amyloid fibril formation. Chemical Science, 2020, 11, 6236-6247.	7.4	64
35	The Properties of \hat{l}_{\pm} -Synuclein Secondary Nuclei Are Dominated by the Solution Conditions Rather than the Seed Fibril Strain. ACS Chemical Neuroscience, 2020, 11, 909-918.	3.5	29
36	The catalytic nature of protein aggregation. Journal of Chemical Physics, 2020, 152, 045101.	3.0	24

#	Article	IF	CITATIONS
37	Dynamics of oligomer populations formed during the aggregation of Alzheimer's Aβ42 peptide. Nature Chemistry, 2020, 12, 445-451.	13.6	223
38	Single Step Purification of Glycogen Synthase Kinase Isoforms from Small Scale Transient Expression in HEK293 Cells with a Calcium-Dependent Fragment Complementation System. Methods in Molecular Biology, 2020, 2095, 385-396.	0.9	3
39	Expression and Purification of Intrinsically Disordered A \hat{l}^2 Peptide and Setup of Reproducible Aggregation Kinetics Experiment. Methods in Molecular Biology, 2020, 2141, 731-754.	0.9	8
40	Screening of small molecules using the inhibition of oligomer formation in \hat{l}_{\pm} -synuclein aggregation as a selection parameter. Communications Chemistry, 2020, 3, .	4.5	27
41	Ultrastructural evidence for self-replication of Alzheimer-associated \hat{Al}^2 42 amyloid along the sides of fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11265-11273.	7.1	37
42	The role of fibril structure and surface hydrophobicity in secondary nucleation of amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25272-25283.	7.1	58
43	Autocatalytic amplification of Alzheimer-associated $\hat{Al^2}$ 42 peptide aggregation in human cerebrospinal fluid. Communications Biology, 2019, 2, 365.	4.4	46
44	Revealing Well-Defined Soluble States during Amyloid Fibril Formation by Multilinear Analysis of NMR Diffusion Data. Journal of the American Chemical Society, 2019, 141, 18649-18652.	13.7	6
45	Fibril Charge Affects α-Synuclein Hydrogel Rheological Properties. Langmuir, 2019, 35, 16536-16544.	3.5	18
46	The Molecular Basis of Human IgG-Mediated Enhancement of C4b-Binding Protein Recruitment to Group A Streptococcus. Frontiers in Immunology, 2019, 10, 1230.	4.8	11
47	Secondary nucleation and elongation occur at different sites on Alzheimer's amyloid-β aggregates. Science Advances, 2019, 5, eaau3112.	10.3	127
48	Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer's disease. Acta Neuropathologica, 2019, 138, 251-273.	7.7	187
49	A method of predicting the in vitro fibril formation propensity of $A\hat{l}^240$ mutants based on their inclusion body levels in E. coli. Scientific Reports, 2019, 9, 3680.	3.3	6
50	Mechanism of amyloid protein aggregation and the role of inhibitors. Pure and Applied Chemistry, 2019, 91, 211-229.	1.9	68
51	Reprint of "Ganglioside lipids accelerate α-synuclein amyloid formation― Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 508-518.	2.3	6
52	Lipid-protein interactions in amyloid formation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 455-457.	2.3	16
53	Increased Secondary Nucleation Underlies Accelerated Aggregation of the Four-Residue N-Terminally Truncated Aβ42 Species Aβ5–42. ACS Chemical Neuroscience, 2019, 10, 2374-2384.	3.5	16
54	Lipid Dynamics and Phase Transition within \hat{l}_{\pm} -Synuclein Amyloid Fibrils. Journal of Physical Chemistry Letters, 2019, 10, 7872-7877.	4.6	43

#	Article	IF	CITATIONS
55	Trodusquemine enhances ${\rm Al}^2$ 42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nature Communications, 2019, 10, 225.	12.8	111
56	Aggregate Size Dependence of Amyloid Adsorption onto Charged Interfaces. Langmuir, 2018, 34, 1266-1273.	3 . 5	5
57	Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid- \hat{l}^2 peptide. Nature Chemistry, 2018, 10, 523-531.	13.6	129
58	Conformational Ensembles of Calmodulin Revealed by Nonperturbing Site-Specific Vibrational Probe Groups. Journal of Physical Chemistry A, 2018, 122, 2947-2955.	2.5	16
59	On-chip label-free protein analysis with downstream electrodes for direct removal of electrolysis products. Lab on A Chip, 2018, 18, 162-170.	6.0	39
60	SAR by kinetics for drug discovery in protein misfolding diseases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10245-10250.	7.1	54
61	Protein stabilization with retained function of monellin using a split GFP system. Scientific Reports, 2018, 8, 12763.	3.3	5
62	Cyanylated Cysteine Reports Site-Specific Changes at Protein–Protein-Binding Interfaces Without Perturbation. Biochemistry, 2018, 57, 3702-3712.	2.5	18
63	Simplifying G Protein-Coupled Receptor Isolation with a Calcium-Dependent Fragment Complementation Affinity System. Biochemistry, 2018, 57, 4383-4390.	2.5	8
64	Disaggregation of gold nanoparticles by Daphnia magna. Nanotoxicology, 2018, 12, 885-900.	3.0	12
65	Ganglioside lipids accelerate α-synuclein amyloid formation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 1062-1072.	2.3	57
66	Secondary nucleation in amyloid formation. Chemical Communications, 2018, 54, 8667-8684.	4.1	323
67	Conserved S/T Residues of the Human Chaperone DNAJB6 Are Required for Effective Inhibition of A \hat{I}^2 42 Amyloid Fibril Formation. Biochemistry, 2018, 57, 4891-4902.	2.5	52
68	Protein–protein interactions in AQP regulation – biophysical characterization of AQP0–CaM and AQP2–LIP5 complex formation. Faraday Discussions, 2018, 209, 35-54.	3.2	16
69	Production and Use of Recombinant $\hat{Al^2}$ for Aggregation Studies. Methods in Molecular Biology, 2018, 1777, 307-320.	0.9	5
70	On the role of sidechain size and charge in the aggregation of A $\langle i \rangle \hat{l}^2 \langle i \rangle$ 42 with familial mutations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5849-E5858.	7.1	98
71	Kinetic Analysis of Amyloid Formation. Methods in Molecular Biology, 2018, 1779, 181-196.	0.9	16
72	Cholesterol catalyses \hat{Al}^2 42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nature Chemistry, 2018, 10, 673-683.	13.6	186

#	Article	IF	CITATIONS
73	Acceleration of α-synuclein aggregation. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 20-21.	3.0	4
74	Secondary nucleation of monomers on fibril surface dominates <i>$\hat{l}\pm$-synuclein aggregation and provides autocatalytic amyloid amplification. Quarterly Reviews of Biophysics, 2017, 50, e6.</i>	5.7	183
7 5	3D MAS NMR Experiment Utilizing Through-Space ¹⁵ N– ¹⁵ N Correlations. Journal of the American Chemical Society, 2017, 139, 6518-6521.	13.7	18
76	Modulation of electrostatic interactions to reveal a reaction network unifying the aggregation behaviour of the \hat{Al}^242 peptide and its variants. Chemical Science, 2017, 8, 4352-4362.	7.4	60
77	Selective targeting of primary and secondary nucleation pathways in $\hat{Al^2}42$ aggregation using a rational antibody scanning method. Science Advances, 2017, 3, e1700488.	10.3	116
78	Cu/Zn Superoxide Dismutase Forms Amyloid Fibrils under Near-Physiological Quiescent Conditions: The Roles of Disulfide Bonds and Effects of Denaturant. ACS Chemical Neuroscience, 2017, 8, 2019-2026.	3.5	25
79	Phage display and kinetic selection of antibodies that specifically inhibit amyloid self-replication. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6444-6449.	7.1	60
80	Systematic development of small molecules to inhibit specific microscopic steps of AÎ ² 42 aggregation in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E200-E208.	7.1	180
81	Proton-Assisted Recoupling (PAR) in Peptides and Proteins. Journal of Physical Chemistry B, 2017, 121, 10804-10817.	2.6	15
82	Monomer-dependent secondary nucleation in amyloid formation. Biophysical Reviews, 2017, 9, 329-338.	3.2	112
83	Scaling behaviour and rate-determining steps in filamentous self-assembly. Chemical Science, 2017, 8, 7087-7097.	7.4	65
84	Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports, 2017, 7, 11452.	3.3	491
85	Aggregation and Fibril Structure of Aβ _{M01–42} and Aβ _{1–42} . Biochemistry, 2017, 56, 4850-4859.	2.5	19
86	Monomeric and fibrillar \hat{l} ±-synuclein exert opposite effects on the catalytic cycle that promotes the proliferation of A \hat{l} 242 aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8005-8010.	7.1	45
87	The nanoparticle protein corona formed in human blood or human blood fractions. PLoS ONE, 2017, 12, e0175871.	2.5	148
88	Calcium Binding and Disulfide Bonds Regulate the Stability of Secretagogin towards Thermal and Urea Denaturation. PLoS ONE, 2016, 11, e0165709.	2.5	11
89	Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nature Communications, 2016, 7, 10948.	12.8	219
90	Translocation of 40 nm diameter nanowires through the intestinal epithelium of <i>Daphnia magna</i> . Nanotoxicology, 2016, 10, 1160-1167.	3.0	34

#	Article	IF	Citations
91	Mathematical Modeling of the Protein Corona: Implications for Nanoparticulate Delivery Systems. Frontiers in Nanobiomedical Research, 2016, , 53-65.	0.1	0
92	The S/T-Rich Motif in the DNAJB6 Chaperone Delays Polyglutamine Aggregation and the Onset of Disease in a Mouse Model. Molecular Cell, 2016, 62, 272-283.	9.7	140
93	Analysis of the length distribution of amyloid fibrils by centrifugal sedimentation. Analytical Biochemistry, 2016, 504, 7-13.	2.4	11
94	A Microfluidic Platform for Real-Time Detection and Quantification of Protein-Ligand Interactions. Biophysical Journal, 2016, 110, 1957-1966.	0.5	29
95	Quantitative analysis of intrinsic and extrinsic factors in the aggregation mechanism of Alzheimer-associated $\hat{Al^2}$ -peptide. Scientific Reports, 2016, 6, 18728.	3.3	77
96	Physical determinants of the self-replication of protein fibrils. Nature Physics, 2016, 12, 874-880.	16.7	90
97	The Aggregation Paths and Products of AÎ ² 42 Dimers Are Distinct from Those of the AÎ ² 42 Monomer. Biochemistry, 2016, 55, 6150-6161.	2.5	22
98	Atomic Resolution Structure of Monomorphic Al̂ 2 ₄₂ Amyloid Fibrils. Journal of the American Chemical Society, 2016, 138, 9663-9674.	13.7	695
99	An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Al 2 42 aggregates linked with Alzheimerâ \in TM s disease. Science Advances, 2016, 2, e1501244.	10.3	180
100	Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nature Protocols, 2016, 11, 252-272.	12.0	546
101	Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution Conditions. ACS Nano, 2016, 10, 333-341.	14.6	105
102	Direct High Affinity Interaction between Aî²42 and GSK3α Stimulates Hyperphosphorylation of Tau. A New Molecular Link in Alzheimer's Disease?. ACS Chemical Neuroscience, 2016, 7, 161-170.	3.5	40
103	High Throughput Screening Method to Explore Protein Interactions with Nanoparticles. PLoS ONE, 2015, 10, e0136687.	2.5	10
104	High Resolution Structural Characterization of A \hat{l}^2 ₄₂ Amyloid Fibrils by Magic Angle Spinning NMR. Journal of the American Chemical Society, 2015, 137, 7509-7518.	13.7	103
105	Calmodulin mutations causing catecholaminergic polymorphic ventricular tachycardia confer opposing functional and biophysical molecular changes. FEBS Journal, 2015, 282, 803-816.	4.7	49
106	A molecular chaperone breaks the catalytic cycle that generates toxic $A\hat{l}^2$ oligomers. Nature Structural and Molecular Biology, 2015, 22, 207-213.	8.2	373
107	A peptide from human semenogelin I self-assembles into a pH-responsive hydrogel. Soft Matter, 2015, 11, 414-421.	2.7	41
108	Haemophilus influenzae surface fibril (Hsf) is a unique twisted hairpin-like trimeric autotransporter. International Journal of Medical Microbiology, 2015, 305, 27-37.	3.6	12

#	Article	IF	Citations
109	Site-Specific Protonation Kinetics of Acidic Side Chains in Proteins Determined by pH-Dependent Carboxyl ¹³ C NMR Relaxation. Journal of the American Chemical Society, 2015, 137, 3093-3101.	13.7	31
110	Acceleration of \hat{l}_{\pm} -Synuclein Aggregation by Exosomes. Journal of Biological Chemistry, 2015, 290, 2969-2982.	3.4	305
111	Protein Microgels from Amyloid Fibril Networks. ACS Nano, 2015, 9, 43-51.	14.6	121
112	On the lag phase in amyloid fibril formation. Physical Chemistry Chemical Physics, 2015, 17, 7606-7618.	2.8	590
113	Digested wheat gluten inhibits binding between leptin and its receptor. BMC Biochemistry, 2015, 16, 3.	4.4	8
114	Fluorescent Filter-Trap Assay for Amyloid Fibril Formation Kinetics in Complex Solutions. ACS Chemical Neuroscience, 2015, 6, 1436-1444.	3.5	24
115	N-Terminal Extensions Retard A \hat{l}^2 42 Fibril Formation but Allow Cross-Seeding and Coaggregation with A \hat{l}^2 42. Journal of the American Chemical Society, 2015, 137, 14673-14685.	13.7	58
116	The A $\hat{1}^2$ 40 and A $\hat{1}^2$ 42 peptides self-assemble into separate homomolecular fibrils in binary mixtures but cross-react during primary nucleation. Chemical Science, 2015, 6, 4215-4233.	7.4	121
117	A microfluidic platform for quantitative measurements of effective protein charges and single ion binding in solution. Physical Chemistry Chemical Physics, 2015, 17, 12161-12167.	2.8	18
118	Latent analysis of unmodified biomolecules and their complexes in solution with attomole detection sensitivity. Nature Chemistry, 2015, 7, 802-809.	13.6	56
119	Altered Behavior, Physiology, and Metabolism in Fish Exposed to Polystyrene Nanoparticles. Environmental Science & Environmental Science & Environment	10.0	421
120	The chaperone domain BRICHOS prevents amyloid \hat{l}^2 -peptide CNS toxicity in Drosophila melanogaster. DMM Disease Models and Mechanisms, 2014, 7, 659-65.	2.4	44
121	Quantification of the Concentration of $\hat{Al^2}42$ Propagons during the Lag Phase by an Amyloid Chain Reaction Assay. Journal of the American Chemical Society, 2014, 136, 219-225.	13.7	120
122	Interaction of the Molecular Chaperone DNAJB6 with Growing Amyloid-beta 42 ($\hat{A^242}$) Aggregates Leads to Sub-stoichiometric Inhibition of Amyloid Formation. Journal of Biological Chemistry, 2014, 289, 31066-31076.	3.4	158
123	Charge Dependent Retardation of Amyloid \hat{l}^2 Aggregation by Hydrophilic Proteins. ACS Chemical Neuroscience, 2014, 5, 266-274.	3.5	62
124	Differences in nucleation behavior underlie the contrasting aggregation kinetics of the $A\hat{l}^240$ and $A\hat{l}^242$ peptides. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9384-9389.	7.1	405
125	Surface Effects on Aggregation Kinetics of Amyloidogenic Peptides. Journal of the American Chemical Society, 2014, 136, 11776-11782.	13.7	158
126	${\rm A\hat{l}^2}$ dimers differ from monomers in structural propensity, aggregation paths and population of synaptotoxic assemblies. Biochemical Journal, 2014, 461, 413-426.	3.7	71

#	Article	IF	CITATIONS
127	Effects of Polyamino Acids and Polyelectrolytes on Amyloid \hat{l}^2 Fibril Formation. Langmuir, 2014, 30, 8812-8818.	3.5	35
128	Size-Dependent Effects of Nanoparticles on Enzymes in the Blood Coagulation Cascade. Nano Letters, 2014, 14, 4736-4744.	9.1	76
129	Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7671-7676.	7.1	546
130	Mathematical modeling of the protein corona: implications for nanoparticulate delivery systems. Nanomedicine, 2014, 9, 851-858.	3.3	21
131	Proliferation of amyloid- \hat{l}^2 42 aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9758-9763.	7.1	1,162
132	The BRICHOS Domain, Amyloid Fibril Formation, and Their Relationship. Biochemistry, 2013, 52, 7523-7531.	2.5	70
133	Förster resonance energy transfer studies of calmodulin produced by native protein ligation reveal interâ€domain electrostatic repulsion. FEBS Journal, 2013, 280, 2675-2687.	4.7	15
134	Calmodulin Transduces Ca ²⁺ Oscillations into Differential Regulation of Its Target Proteins. ACS Chemical Neuroscience, 2013, 4, 601-612.	3.5	18
135	Adsorption of $\hat{l}\pm$ -Synuclein to Supported Lipid Bilayers: Positioning and Role of Electrostatics. ACS Chemical Neuroscience, 2013, 4, 1339-1351.	3.5	82
136	Membrane Lipid Co-Aggregation with α-Synuclein Fibrils. PLoS ONE, 2013, 8, e77235.	2.5	113
137	Three-Dimensional Tracking of Small Aquatic Organisms Using Fluorescent Nanoparticles. PLoS ONE, 2013, 8, e78498.	2.5	40
138	Role of Aromatic Side Chains in Amyloid \hat{l}^2 -Protein Aggregation. ACS Chemical Neuroscience, 2012, 3, 1008-1016.	3.5	92
139	Delivery success rate of engineered nanoparticles in the presence of the protein corona: a systems-level screening. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1271-1281.	3.3	38
140	Dynamics of Conformational Ca ²⁺ -Switches in Signaling Networks Detected by a Planar Plasmonic Device. Analytical Chemistry, 2012, 84, 2982-2989.	6.5	44
141	Calcium-Dependent Interaction of Calmodulin with Human 80S Ribosomes and Polyribosomes. Biochemistry, 2012, 51, 6718-6727.	2.5	8
142	BRICHOS Domains Efficiently Delay Fibrillation of Amyloid \hat{l}^2 -Peptide. Journal of Biological Chemistry, 2012, 287, 31608-31617.	3.4	127
143	Biocompatibility of mannan nanogelâ€"safe interaction with plasma proteins. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1043-1051.	2.4	27
144	Polystyrene nanoparticles affecting blood coagulation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 981-986.	3.3	73

#	Article	IF	Citations
145	Specific Binding of a \hat{l}^2 -Cyclodextrin Dimer to the Amyloid \hat{l}^2 Peptide Modulates the Peptide Aggregation Process. Biochemistry, 2012, 51, 4280-4289.	2.5	49
146	High Affinity Antibodies to Plasmodium falciparum Merozoite Antigens Are Associated with Protection from Malaria. PLoS ONE, 2012, 7, e32242.	2.5	49
147	Food Chain Transport of Nanoparticles Affects Behaviour and Fat Metabolism in Fish. PLoS ONE, 2012, 7, e32254.	2.5	397
148	Interactions in the native state of monellin, which play a protective role against aggregation. Molecular BioSystems, 2011, 7, 521-532.	2.9	12
149	Identification of a high-affinity network of secretagogin-binding proteins involved in vesicle secretion. Molecular BioSystems, 2011, 7, 2196.	2.9	35
150	Monte Carlo simulations of protein amyloid formation reveal origin of sigmoidal aggregation kinetics. Molecular BioSystems, 2011, 7, 2296.	2.9	29
151	The Structural Role of N-Linked Glycans on Human Glypican-1. Biochemistry, 2011, 50, 9377-9387.	2.5	10
152	Probing Calmodulin Protein–Protein Interactions Using High-Content Protein Arrays. Methods in Molecular Biology, 2011, 785, 289-303.	0.9	10
153	Structural Changes in Apolipoproteins Bound to Nanoparticles. Langmuir, 2011, 27, 14360-14369.	3.5	95
154	Molecular Determinants of S100B Oligomer Formation. PLoS ONE, 2011, 6, e14768.	2.5	12
155	Rapid and Facile Purification of Apolipoprotein A-I from Human Plasma Using Thermoresponsive Nanoparticles. Journal of Biomaterials and Nanobiotechnology, 2011, 02, 258-266.	0.5	9
156	Membrane Interaction of \hat{l}_{\pm} -Synuclein in Different Aggregation States. Journal of Parkinson's Disease, 2011, 1, 359-371.	2.8	123
157	Protein Networks Involved in Vesicle Fusion, Transport, and Storage Revealed by Array-Based Proteomics. Methods in Molecular Biology, 2011, 781, 47-58.	0.9	6
158	Amyloid \hat{l}^2 -Protein Aggregation Produces Highly Reproducible Kinetic Data and Occurs by a Two-Phase Process. ACS Chemical Neuroscience, 2010, 1, 13-18.	3.5	339
159	Calcium binding, structural stability and guanylate cyclase activation in GCAP1 variants associated with human cone dystrophy. Cellular and Molecular Life Sciences, 2010, 67, 973-984.	5.4	67
160	Modeling the Time Evolution of the Nanoparticle-Protein Corona in a Body Fluid. PLoS ONE, 2010, 5, e10949.	2.5	272
161	Integrated Protein Array Screening and High Throughput Validation of 70 Novel Neural Calmodulin-binding Proteins. Molecular and Cellular Proteomics, 2010, 9, 1118-1132.	3.8	41
162	In vivo protein stabilization based on fragment complementation and a split GFP system. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19826-19831.	7.1	24

#	Article	IF	CITATIONS
163	Retardation of $\hat{Al^2}$ Fibril Formation by Phospholipid Vesicles Depends on \hat{Al} Membrane Phase Behavior. Biophysical Journal, 2010, 98, 2206-2214.	0.5	65
164	pKa Values for the Unfolded State under Native Conditions Explain the pH-Dependent Stability of PGB1. Biophysical Journal, 2010, 99, 3365-3373.	0.5	13
165	Dual Effect of Amino Modified Polystyrene Nanoparticles on Amyloid \hat{l}^2 Protein Fibrillation. ACS Chemical Neuroscience, 2010, 1, 279-287.	3.5	252
166	NANOINTERACT: A rational approach to the interaction between nanoscale materials and living matter?. Journal of Physics: Conference Series, 2009, 170, 012040.	0.4	1
167	Protein GB1 Folding and Assembly from Structural Elements. International Journal of Molecular Sciences, 2009, 10, 1552-1566.	4.1	13
168	Green fluorescence induced by EFâ€hand assembly in a split GFP system. Protein Science, 2009, 18, 1221-1229.	7.6	14
169	A facile method for expression and purification of the Alzheimer's diseaseâ€associated amyloid βâ€peptide. FEBS Journal, 2009, 276, 1266-1281.	4.7	237
170	Complete highâ€density lipoproteins in nanoparticle corona. FEBS Journal, 2009, 276, 3372-3381.	4.7	247
171	Role of protein surface charge in monellin sweetness. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 410-420.	2.3	34
172	Chemical and Thermal Unfolding of Glypican-1: Protective Effect of Heparan Sulfate against Heat-Induced Irreversible Aggregation. Biochemistry, 2009, 48, 9994-10004.	2.5	25
173	Molecular Design of Specific Metalâ€Binding Peptide Sequences from Protein Fragments: Theory and Experiment. Chemistry - A European Journal, 2008, 14, 7836-7846.	3.3	16
174	Zn ²⁺ binding to human calbindin D _{28k} and the role of histidine residues. Protein Science, 2008, 17, 760-767.	7.6	15
175	Structure and functional properties of the <i>Bacillus subtilis</i> transcriptional repressor Rex. Molecular Microbiology, 2008, 69, 466-478.	2.5	134
176	Inhibition of Amyloid \hat{l}^2 Protein Fibrillation by Polymeric Nanoparticles. Journal of the American Chemical Society, 2008, 130, 15437-15443.	13.7	499
177	Calmodulin Binding to the Polybasic C-Termini of STIM Proteins Involved in Store-Operated Calcium Entry. Biochemistry, 2008, 47, 6089-6091.	2.5	66
178	Effects of Metal-Binding Loop Mutations on Ligand Binding to Calcium- and Integrin-Binding Protein 1. Evolution of the EF-Hand?. Biochemistry, 2008, 47, 1696-1707.	2.5	16
179	Binding of calcium ions and SNAP-25 to the hexa EF-hand protein secretagogin. Biochemical Journal, 2007, 401, 353-363.	3.7	88
180	Systematic Investigation of the Thermodynamics of HSA Adsorption to $\langle i \rangle N \langle i \rangle - \langle i \rangle Sropylacrylamide/\langle i \rangle N \langle i \rangle - \langle i \rangle Sropylacrylamide/\langle i \rangle N \langle i \rangle - \langle i \rangle Sropylacrylamide Copolymer Nanoparticles. Effects of Particle Size and Hydrophobicity. Nano Letters, 2007, 7, 914-920.$	9.1	357

#	Article	IF	Citations
181	Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2050-2055.	7.1	2,705
182	Nucleation of protein fibrillation by nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8691-8696.	7.1	800
183	Protein Folding through Kinetic Discrimination. Journal of the American Chemical Society, 2007, 129, 8481-8486.	13.7	11
184	pKa Values for Side-Chain Carboxyl Groups of a PGB1 Variant Explain Salt and pH-Dependent Stability. Biophysical Journal, 2007, 92, 257-266.	0.5	46
185	Residue-Specific p <i>K</i> _a Determination of Lysine and Arginine Side Chains by Indirect ¹⁵ N and ¹³ C NMR Spectroscopy:  Application to <i>apo</i> Calmodulin. Journal of the American Chemical Society, 2007, 129, 15805-15813.	13.7	99
186	Detailed Identification of Plasma Proteins Adsorbed on Copolymer Nanoparticles. Angewandte Chemie - International Edition, 2007, 46, 5754-5756.	13.8	721
187	Methods for the detection and analysis of protein–protein interactions. Proteomics, 2007, 7, 2833-2842.	2.2	554
188	Structural properties of semenogelin I. FEBS Journal, 2007, 274, 4503-4510.	4.7	15
189	Protein reconstitution and threeâ€dimensional domain swapping: Benefits and constraints of covalency. Protein Science, 2007, 16, 2317-2333.	7.6	51
190	Production and physicochemical characterization of acidocin D20079, a bacteriocin produced by Lactobacillus acidophilus DSM 20079. World Journal of Microbiology and Biotechnology, 2007, 23, 911-921.	3.6	5
191	The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Advances in Colloid and Interface Science, 2007, 134-135, 167-174.	14.7	618
192	Salt Enhances Calmodulin-Target Interaction. Biophysical Journal, 2006, 90, 2903-2910.	0.5	27
193	Salting the Charged Surface: pH and Salt Dependence of Protein G B1 Stability. Biophysical Journal, 2006, 90, 2911-2921.	0.5	111
194	Truncated Semenogelin I Binds Zinc and Is Cleaved by Prostate-Specific Antigen. Journal of Andrology, 2006, 27, 542-547.	2.0	7
195	140 Mouse Brain Proteins Identified by Ca2+-Calmodulin Affinity Chromatography and Tandem Mass Spectrometry. Journal of Proteome Research, 2006, 5, 669-687.	3.7	76
196	Binding of Calcium to Anticoagulant Protein S: Role of the Fourth EGF Module. Biochemistry, 2006, 45, 10682-10689.	2.5	10
197	Electrostatic Contributions to Residue-Specific Protonation Equilibria and Proton Binding Capacitance for a Small Protein. Biochemistry, 2006, 45, 13993-14002.	2.5	31
198	Reconstitution of Calmodulin from Domains and Subdomains: Influence of Target Peptide. Journal of Molecular Biology, 2006, 358, 870-881.	4.2	21

#	Article	IF	CITATIONS
199	Intra- versus Intermolecular Interactions in Monellin: Contribution of Surface Charges to Protein Assembly. Journal of Molecular Biology, 2006, 358, 1244-1255.	4.2	28
200	Extreme Sequence Divergence but Conserved Ligand-Binding Specificity in Streptococcus pyogenes M Protein. PLoS Pathogens, 2006, 2, e47.	4.7	56
201	Detecting Cryptic Epitopes Created by Nanoparticles. Science Signaling, 2006, 2006, pe14-pe14.	3.6	184
202	Semenogelins I and II bind zinc and regulate the activity of prostate-specific antigen. Biochemical Journal, 2005, 387, 447-453.	3.7	96
203	Stability of HAMLETA kinetically trapped Â-lactalbumin oleic acid complex. Protein Science, 2005, 14, 329-340.	7.6	59
204	Characterization of calretinin I-II as an EF-hand, Ca2+, H+-sensing domain. Protein Science, 2005, 14, 1879-1887.	7.6	6
205	Calbindin D28k EF-Hand Ligand Binding and Oligomerization:  Four High-Affinity SitesThree Modes of Action. Biochemistry, 2005, 44, 13522-13532.	2.5	8
206	Redox Sensitive Cysteine Residues in Calbindin D28k Are Structurally and Functionally Important. Biochemistry, 2005, 44, 684-693.	2.5	19
207	Binding of Charged Ligands to Macromolecules. Anomalous Salt Dependence. Journal of Physical Chemistry B, 2005, 109, 2007-2013.	2.6	13
208	Compact oleic acid in HAMLET. FEBS Letters, 2005, 579, 6095-6100.	2.8	34
209	Electrostatic Contributions to the Kinetics and Thermodynamics of Protein Assembly. Biophysical Journal, 2005, 88, 1991-2002.	0.5	39
210	Deamidation and disulfide bridge formation in human calbindin D28k with effects on calcium binding. Protein Science, 2005, 14, 968-979.	7.6	20
211	Letter to the Editor: Sequential1H,15N and13C NMR Assignment of Human Calbindin D28k. Journal of Biomolecular NMR, 2004, 28, 305-306.	2.8	3
212	Multi-method global analysis of thermodynamics and kinetics in reconstitution of monellin. Proteins: Structure, Function and Bioinformatics, 2004, 57, 586-595.	2.6	20
213	The Role of Electrostatic Interactions in Calmodulin-Peptide Complex Formation. Biophysical Journal, 2004, 87, 1929-1938.	0.5	57
214	HAMLET kills tumor cells by an apoptosis-like mechanismâ€"cellular, molecular, and therapeutic aspects. Advances in Cancer Research, 2003, 88, 1-29.	5.0	143
215	α-Lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human α-lactalbumin made lethal to tumor cells). Protein Science, 2003, 12, 2794-2804.	7.6	120
216	Lipids as cofactors in protein folding: Stereo-specific lipid-protein interactions are required to form HAMLET (human α-lactalbumin made lethal to tumor cells). Protein Science, 2003, 12, 2805-2814.	7.6	98

#	Article	IF	Citations
217	A Proline-Rich Region with a Highly Periodic Sequence in Streptococcal \hat{I}^2 Protein Adopts the Polyproline II Structure and Is Exposed on the Bacterial Surface. Journal of Bacteriology, 2002, 184, 6376-6383.	2.2	22
218	Hamlet $\hat{a}\in$ " A Complex from Human Milk that Induces Apoptosis in Tumor Cells but Spares Healthy Cells. Advances in Experimental Medicine and Biology, 2002, 503, 125-132.	1.6	30
219	Calcium Binding to Proteins Studied via Competition with Chromophoric Chelators. , 2002, 173, 015-024.		33
220	Calbindin D28k Exhibits Properties Characteristic of a Ca2+ Sensor. Journal of Biological Chemistry, 2002, 277, 16662-16672.	3.4	113
221	myo-Inositol Monophosphatase Is an Activated Target of Calbindin D28k. Journal of Biological Chemistry, 2002, 277, 41954-41959.	3.4	68
222	Calcium Binding and Thermostability of Carbohydrate Binding Module CBM4-2 of Xyn10A fromRhodothermus marinusâ€. Biochemistry, 2002, 41, 5720-5729.	2.5	41
223	Structural Requirements of Anticoagulant Protein S for Its Binding to the Complement Regulator C4b-binding Protein. Journal of Biological Chemistry, 2002, 277, 15099-15106.	3.4	24
224	Measurement of Ca2+-Binding Constants of Proteins and Presentation of the CaLigator Software. Analytical Biochemistry, 2002, 305, 195-205.	2.4	91
225	A folding variant of α-lactalbumin with bactericidal activity against Streptococcus pneumoniae. Molecular Microbiology, 2002, 35, 589-600.	2.5	91
226	Coupling of ligand binding and dimerization of helix-loop-helix peptides: Spectroscopic and sedimentation analyses of calbindin D9k EF-hands. Proteins: Structure, Function and Bioinformatics, 2002, 47, 323-333.	2.6	31
227	Protein Reconstitution and 3D Domain Swapping. Current Protein and Peptide Science, 2002, 3, 629-642.	1.4	30
228	Calbindin D9k:  A Protein Optimized for Calcium Binding at Neutral pH. Biochemistry, 2001, 40, 15334-15340.	2.5	26
229	Fragment Complementation Studies of Protein Stabilization by Hydrophobic Core Residuesâ€. Biochemistry, 2001, 40, 1257-1264.	2.5	40
230	Symmetrical Stabilization of Bound Ca2+lons in a Cooperative Pair of EF-Hands through Hydrogen Bonding of Coordinating Water Molecules in Calbindin D9kâ€. Biochemistry, 2001, 40, 9887-9895.	2.5	10
231	The First Epidermal Growth Factor-like Domain of the Low-Density Lipoprotein Receptor Contains a Noncanonical Calcium Binding Site. Biochemistry, 2001, 40, 2555-2563.	2.5	33
232	Focusing of the electrostatic potential at EF-hands of calbindin D9k: Titration of acidic residues. Proteins: Structure, Function and Bioinformatics, 2001, 45, 129-135.	2.6	35
233	An extended hudrophobic core induces EF-hand swapping. Protein Science, 2001, 10, 927-933.	7.6	36
234	The chaperone-like activity of a small heat shock protein is lost after sulfoxidation of conserved methionines in a surface-exposed amphipathic \hat{l}_{\pm} -helix. BBA - Proteins and Proteomics, 2001, 1545, 227-237.	2.1	41

#	Article	IF	Citations
235	Isolated Hypervariable Regions Derived from Streptococcal M Proteins Specifically Bind Human C4b-Binding Protein: Implications for Antigenic Variation. Journal of Immunology, 2001, 167, 3870-3877.	0.8	62
236	A folding variant of alpha-lactalbumin with bactericidal activity against Streptococcus pneumoniae. Molecular Microbiology, 2000, 36, 247-247.	2.5	1
237	Fragment complementation of calbindin D _{28k} . Protein Science, 2000, 9, 2094-2108.	7.6	23
238	An EF-hand phage display study of calmodulin subdomain pairing 1 1Edited by J. A. Wells. Journal of Molecular Biology, 2000, 296, 473-486.	4.2	28
239	Ca2+- and H+-Dependent Conformational Changes of Calbindin D28kâ€. Biochemistry, 2000, 39, 6864-6873.	2.5	45
240	Domain Identification of Hormone-sensitive Lipase by Circular Dichroism and Fluorescence Spectroscopy, Limited Proteolysis, and Mass Spectrometry. Journal of Biological Chemistry, 1999, 274, 15382-15388.	3.4	30
241	Molecular Characterization of α–Lactalbumin Folding Variants That Induce Apoptosis in Tumor Cells. Journal of Biological Chemistry, 1999, 274, 6388-6396.	3.4	185
242	Both G-type domains of protein S are required for the high-affinity interaction with C4b-binding protein. FEBS Journal, 1999, 266, 935-942.	0.2	32
243	lonization Behavior of Acidic Residues in Calbindin D9k. Proteins: Structure, Function and Bioinformatics, 1999, 37, 106-115.	2.6	41
244	Battle for the EF-Hands:  Magnesiumâ^Calcium Interference in Calmodulin. Biochemistry, 1999, 38, 11844-11850.	2.5	85
245	Expression and Purification of Human Calbindin D28k. Protein Expression and Purification, 1999, 15, 265-270.	1.3	11
246	Synthesis of an N-linked glycopeptide from vitamin K-dependent protein S. Tetrahedron, 1998, 54, 11995-12006.	1.9	9
247	Hydrophobic Core Substitutions in Calbindin D9k: Effects on Stability and Structureâ€. Biochemistry, 1998, 37, 8915-8925.	2.5	35
248	Hydrophobic Core Substitutions in Calbindin D9k: Effects on Ca2+Binding and Dissociationâ€. Biochemistry, 1998, 37, 8926-8937.	2.5	39
249	A Region of Vitamin K-dependent Protein S That Binds to C4b Binding Protein (C4BP) Identified Using Bacteriophage Peptide Display Libraries. Journal of Biological Chemistry, 1997, 272, 14658-14665.	3.4	29
250	The High Affinity Calcium-binding Sites in the Epidermal Growth Factor Module Region of Vitamin K-dependent Protein S. Journal of Biological Chemistry, 1997, 272, 23255-23260.	3.4	34
251	Binding Site for C4b-Binding Protein in Vitamin K-Dependent Protein S Fully Contained in Carboxy-Terminal Laminin-G-type Repeats. A Study Using Recombinant Factor IX-Protein S Chimeras and Surface Plasmon Resonanceâ€. Biochemistry, 1997, 36, 3745-3754.	2.5	46
252	A calbindin D _{9k} mutant containing a novel structural extension: ¹ H nuclear magnetic resonance studies. Protein Science, 1997, 6, 323-330.	7.6	5

#	Article	IF	CITATIONS
253	Structural basis for the negative allostery between Ca ²⁺ â€and Mg ²⁺ â€binding in the intracellular Ca ²⁺ â€receptor calbindin D _{9k} . Protein Science, 1997, 6, 1139-1147.	7.6	65
254	SHBG region of the anticoagulant cofactor protein S: Secondary structure prediction, circular dichroism spectroscopy, and analysis of naturally occurring mutations., 1997, 29, 478-491.		32
255	Domain organization of calbindin D _{28k} as determined from the association of six synthetic EFâ€hand fragments. Protein Science, 1997, 6, 2385-2396.	7.6	38
256	Ca2+-Binding Stoichiometry of Calbindin D28k As Assessed by Spectroscopic Analyses of Synthetic Peptide Fragments. Biochemistry, 1996, 35, 3662-3669.	2.5	38
257	Measurement and Modelling of Sequence-specific pKaValues of Lysine Residues in Calbindin D9k. Journal of Molecular Biology, 1996, 259, 828-839.	4.2	81
258	Cooperativity: over the Hill. Trends in Biochemical Sciences, 1995, 20, 495-497.	7.5	73
259	Quantitative measurements of the cooperativity in an EFâ€hand protein with sequential calcium binding. Protein Science, 1995, 4, 1038-1044.	7.6	47
260	3 Determinants that govern high-affinity calcium binding. Advances in Second Messenger and Phosphoprotein Research, 1995, 30, 89-151.	4.5	114
261	Binding of Ca2+ to Calbindin D9k: Structural Stability and Function at High Salt Concentration. Biochemistry, 1994, 33, 14170-14176.	2.5	23
262	A Calbindin D9k Mutant with Reduced Calcium Affinity and Enhanced Cooperativity. Metal Ion Binding, Stability, and Structural Studies. Biochemistry, 1994, 33, 12478-12486.	2.5	14
263	Disulfide bonds in homo―and heterodimers of EFâ€hand subdomains of calbindin D _{9k} : Stability, calcium binding, and NMR studies. Protein Science, 1993, 2, 985-1000.	7.6	46
264	Mutational effects on the cooperativity of calcium binding in calmodulin. Biochemistry, 1993, 32, 7866-7871.	2.5	96
265	Electrostatic contributions to the binding of calcium in calbindin D9k. Biochemistry, 1991, 30, 154-162.	2.5	152
266	lon-binding properties of calbindin D9k: a Monte Carlo simulation study. Biochemistry, 1991, 30, 5209-5217.	2.5	33
267	Ca ²⁺ Binding in Proteins of the Calmodulin Superfamily: Cooperativity, Electrostatic Contributions and Molecular Mechanisms. Novartis Foundation Symposium, 1991, 161, 222-236.	1.1	6
268	Calcium binding to calbindin D9k strongly affects backbone dynamics: measurements of exchange rates of individual amide protons using proton NMR. Biochemistry, 1990, 29, 5925-5934.	2.5	48
269	Protein surface charges and calcium binding to individual sites in calbindin D9k: stopped-flow studies. Biochemistry, 1990, 29, 4188-4193.	2.5	61
270	Effect of amino acid substitutions and deletions on the thermal stability, the pH stability and unfolding by urea of bovine calbindin D9k. FEBS Journal, 1988, 175, 439-445.	0.2	47

#	Article	IF	CITATIONS
271	The role of protein surface charges in ion binding. Nature, 1988, 335, 651-652.	27.8	144
272	Kinetics of calcium binding to calbindin mutants. FEBS Journal, 1988, 177, 47-52.	0.2	10
273	Structure-function relationships in EF-hand calcium-binding proteins. Protein engineering and biophysical studies of calbindin D9k. Biochemistry, 1987, 26, 6723-6735.	2.5	139
274	Mastoparan binding induces a structural change affecting both the N-terminal and C-terminal domains of calmodulin. FEBS Letters, 1986, 199, 28-32.	2.8	36
275	Kinetics of cadmium and terbium dissociation from calmodulin and its tryptic fragments. FEBS Journal, 1986, 161, 595-601.	0.2	23
276	Chiral selectivity of secondary nucleation in amyloid fibril propagation. Angewandte Chemie, 0, , .	2.0	2