Yu Hoshino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2216654/publications.pdf

Version: 2024-02-01

		117625	102487
125	4,869	34	66
papers	citations	h-index	g-index
133	133	133	5193
all docs	docs citations	times ranked	citing authors
133 all docs	133 docs citations	133 times ranked	5193 citing authors

#	Article	IF	CITATIONS
1	A QCM study of strong carbohydrate–carbohydrate interactions of glycopolymers carrying mannosides on substrates. Journal of Materials Chemistry B, 2022, 10, 2597-2601.	5.8	7
2	Engineered Nanogel Particles Enhance the Photoautotrophic Biosynthesis of Polyhydroxyalkanoate in Marine Photosynthetic Bacteria. ACS Sustainable Chemistry and Engineering, 2022, 10, 4133-4142.	6.7	3
3	Facile Preparation of a Glycopolymer Library by PET-RAFT Polymerization for Screening the Polymer Structures of GM1 Mimics. ACS Omega, 2022, 7, 13254-13259.	3.5	5
4	<i>De Novo</i> Design of Star-Shaped Glycoligands with Synthetic Polymer Structures toward an Influenza Hemagglutinin Inhibitor. Biomacromolecules, 2022, 23, 1232-1241.	5.4	2
5	Polymer Nanoparticles with Uniform Monomer Sequences for Sequenceâ€Specific Peptide Recognition. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
6	Thermoresponsive CO2 absorbent for various CO2 concentrations: tuning the pKa of ammonium ions for effective carbon capture. Polymer Journal, 2021, 53, 157-167.	2.7	9
7	Screening of a glycopolymer library for GM1 mimetics synthesized by the "carbohydrate module method― Chemical Communications, 2021, 57, 10871-10874.	4.1	6
8	Design of abiotic polymer ligand-decorated lipid nanoparticles for effective neutralization of target toxins in the blood. Biomaterials Science, 2021, 9, 5588-5598.	5 . 4	2
9	Bio-inert Properties of TEG Modified Dendrimer Interface. Analytical Sciences, 2021, 37, 519-523.	1.6	O
10	Influence of Monomer Structures for Polymeric Multivalent Ligands: Consideration of the Molecular Mobility of Glycopolymers. Biomacromolecules, 2021, 22, 3119-3127.	5 . 4	12
11	Assembly of Defect-Free Microgel Nanomembranes for CO ₂ Separation. ACS Applied Materials & Separation. ACS Applied & Separati	8.0	18
12	Design of synthetic polymer nanoparticles that inhibit glucose absorption from the intestine. Biochemical and Biophysical Research Communications, 2021, 561, 1-6.	2.1	1
13	Rational Design of Thermocells Driven by the Volume Phase Transition of Hydrogel Nanoparticles. ACS Applied Materials & Driven By 13, 32184-32192.	8.0	11
14	Synthetic hydrogel nanoparticles for sepsis therapy. Nature Communications, 2021, 12, 5552.	12.8	27
15	Investigation of the effect of microflow reactor diameter on condensation reactions in <scp>l</scp> -proline-immobilized polymer monoliths. Reaction Chemistry and Engineering, 2021, 7, 55-60.	3.7	3
16	Probing the Biogenesis of Polysaccharide Granules in Algal Cells at Sub-Organellar Resolution via Raman Microscopy with Stable Isotope Labeling. Analytical Chemistry, 2021, 93, 16796-16803.	6.5	3
17	Homogeneous Oligomeric Ligands Prepared via Radical Polymerization that Recognize and Neutralize a Target Peptide. Angewandte Chemie, 2020, 132, 689-693.	2.0	3
18	Homogeneous Oligomeric Ligands Prepared via Radical Polymerization that Recognize and Neutralize a Target Peptide. Angewandte Chemie - International Edition, 2020, 59, 679-683.	13.8	26

#	Article	IF	CITATIONS
19	Honeycomb-carbon-fiber-supported amine-containing nanogel particles for CO2 capture using a rotating column TVSA. Chemical Engineering Journal, 2020, 383, 123123.	12.7	19
20	Fine-tuning of the surface porosity of micropatterned polyethersulfone membranes prepared by phase separation micromolding. Polymer Journal, 2020, 52, 397-403.	2.7	10
21	Multi-block and sequence-controlled polymerization of glycopolymers, and interaction with lectin. European Polymer Journal, 2020, 140, 110044.	5.4	6
22	Thermocells Driven by Phase Transition of Hydrogel Nanoparticles. Journal of the American Chemical Society, 2020, 142, 17318-17322.	13.7	54
23	Aggregation of a double hydrophilic block glycopolymer: the effect of block polymer ratio. Journal of Materials Chemistry B, 2020, 8, 10101-10107.	5.8	13
24	Raman image-activated cell sorting. Nature Communications, 2020, 11, 3452.	12.8	116
25	Polystyrene-Cross-Linking Triphenylphosphine on a Porous Monolith: Enhanced Catalytic Activity for Aryl Chloride Cross-Coupling in Biphasic Flow. Industrial & Engineering Chemistry Research, 2020, 59, 15179-15187.	3.7	7
26	Intelligent image-activated cell sorting 2.0. Lab on A Chip, 2020, 20, 2263-2273.	6.0	93
27	Polystyreneâ€Supported PPh ₃ in Monolithic Porous Material: Effect of Crossâ€Linking Degree on Coordination Mode and Catalytic Activity in Pdâ€Catalyzed Câ^C Crossâ€Coupling of Aryl Chlorides. ChemCatChem, 2020, 12, 4034-4037.	3.7	9
28	Electrostatic Interactions between Acid-/Base-Containing Polymer Nanoparticles and Proteins: Impact of Polymerization pH. ACS Applied Bio Materials, 2020, 3, 3827-3834.	4.6	10
29	Spatiotemporal monitoring of intracellular metabolic dynamics by resonance Raman microscopy with isotope labeling. RSC Advances, 2020, 10, 16679-16686.	3.6	4
30	Polyamine nanogel particles spray-coated on carbon paper for efficient CO2 capture in a milli-channel reactor. Chemical Engineering Journal, 2020, 401, 126059.	12.7	11
31	Affinity purification of multifunctional oligomeric ligands synthesizedviacontrolled radical polymerization. Journal of Materials Chemistry B, 2020, 8, 5597-5601.	5.8	3
32	Controlling the block sequence of multi-block oligomer ligands for neutralization of a target peptide. Materials Advances, 2020, 1 , 604-608.	5.4	2
33	Combining Acid- and Base-Imprinted Nanoparticles in a Hydrogel Film for Temperature-Responsive Quick and Reversible Capture of Salt. ACS Applied Polymer Materials, 2020, 2, 505-514.	4.4	10
34	Development of Macroporous Polymer Monolith Immobilizing L-Proline-Based Organocatalyst and Application to Flow Asymmetric Aldol Addition Reaction. Kagaku Kogaku Ronbunshu, 2020, 46, 77-83.	0.3	0
35	Preparation of multifunctional glycopolymers using double orthogonal reactions and the effect of electrostatic groups on the glycopolymer–lectin interaction. Polymer Journal, 2019, 51, 1299-1308.	2.7	3
36	Amine-containing nanogel particles supported on porous carriers for enhanced carbon dioxide capture. Applied Energy, 2019, 253, 113567.	10.1	14

#	Article	IF	Citations
37	Isolating Single <i>Euglena gracilis</i> Cells by Glass Microfluidics for Raman Analysis of Paramylon Biogenesis. Analytical Chemistry, 2019, 91, 9631-9639.	6.5	27
38	A practical guide to intelligent image-activated cell sorting. Nature Protocols, 2019, 14, 2370-2415.	12.0	71
39	Fibronectin Coating on Implant Material Surface Attracted Both Osteoblasts and Bacteria. Chemistry Letters, 2019, 48, 764-767.	1.3	1
40	Engineering the Binding Kinetics of Synthetic Polymer Nanoparticles for siRNA Delivery. Biomacromolecules, 2019, 20, 3648-3657.	5.4	12
41	High-throughput label-free molecular fingerprinting flow cytometry. Science Advances, 2019, 5, eaau0241.	10.3	102
42	Synthesis of Various Glycopolymers Bearing Sialyllactose and the Effect of Their Molecular Mobility on Interaction with the Influenza Virus. Biomacromolecules, 2019, 20, 2763-2769.	5.4	17
43	Biopolymer monolith for protein purification. Faraday Discussions, 2019, 219, 154-167.	3.2	2
44	Topological Design of Star Glycopolymers for Controlling the Interaction with the Influenza Virus. Bioconjugate Chemistry, 2019, 30, 1192-1198.	3.6	36
45	Quantitative preparation of multiblock glycopolymers bearing glycounits at the terminal segments by aqueous reversible addition–fragmentation chain transfer polymerization of acrylamide monomers. Journal of Polymer Science Part A, 2019, 57, 857-861.	2.3	8
46	Design of Synthetic Polymer Nanoparticles Specifically Capturing Indole, a Small Toxic Molecule. Biomacromolecules, 2019, 20, 1644-1654.	5.4	16
47	Glycopolymers Mimicking GM1 Gangliosides: Cooperativity of Galactose and Neuraminic Acid for Cholera Toxin Recognition. Chemistry - an Asian Journal, 2019, 14, 1021-1027.	3.3	11
48	Screening of a Glycopolymer Library of GM1 Mimics Containing Hydrophobic Units Using Surface Plasmon Resonance Imaging. ACS Omega, 2019, 4, 20690-20696.	3.5	8
49	Sequestering and inhibiting a vascular endothelial growth factor in vivo by systemic administration of a synthetic polymer nanoparticle. Journal of Controlled Release, 2019, 295, 13-20.	9.9	29
50	Controlling the lectin recognition of glycopolymers <i>via</i> distance arrangement of sugar blocks. Chemical Communications, 2018, 54, 82-85.	4.1	43
51	Bacterial Inhibition and Osteoblast Adhesion on Ti Alloy Surfaces Modified by Poly(PEGMA- <i>r</i> -Phosmer) Coating. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23674-23681.	8.0	19
52	Self-Assembly of a Double Hydrophilic Block Glycopolymer and the Investigation of Its Mechanism. Langmuir, 2018, 34, 8591-8598.	3.5	21
53	Size-tuned hydrogel network of palladium-confining polymer particles: a highly active and durable catalyst for Suzuki coupling reactions in water at ambient temperature. Polymer Journal, 2018, 50, 1179-1186.	2.7	14
54	Intelligent Image-Activated Cell Sorting. Cell, 2018, 175, 266-276.e13.	28.9	395

#	Article	IF	CITATIONS
55	Reversible p <i>K</i> _a Modulation of Carboxylic Acids in Temperature-Responsive Nanoparticles through Imprinted Electrostatic Interactions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31096-31105.	8.0	11
56	Syntheses and Functions of Glycosaminoglycan Mimicking Polymers. , 2018, , 213-224.		0
57	Development of Gas Separation Membranes Consisting of Hydrogel Particles for CO2 Capture from Combustion Gas. Membrane, 2018, 43, 132-136.	0.0	0
58	Glycopolymer monoliths for affinity bioseparation of proteins in a continuous-flow system: glycomonoliths. Journal of Materials Chemistry B, 2017, 5, 1148-1154.	5.8	10
59	Effects of Hydrophobic Modifications and Phase Transitions of Polyvinylamine Hydrogel Films on Reversible CO ₂ Capture Behavior: Comparison between Copolymer Films and Blend Films for Temperatureâ€Responsive CO ₂ Absorption. Macromolecular Chemistry and Physics, 2017, 218. 1600570.	2.2	16
60	Macroporous Monolith with Polymer Gel Matrix as Continuous-flow Catalytic Reactor. Chemistry Letters, 2017, 46, 1065-1067.	1.3	12
61	Design and preparation of thermo-responsive vinylamine-containing micro-gel particles for reversible absorption of carbon dioxide. Polymer Journal, 2017, 49, 601-606.	2.7	15
62	A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165). Nature Chemistry, 2017, 9, 715-722.	13.6	125
63	Glycoglycan Mimic by Synthetic Polymers. ACS Symposium Series, 2017, , 69-77.	0.5	0
64	Rational designing of an antidote nanoparticle decorated with abiotic polymer ligands for capturing and neutralizing target toxins. Journal of Controlled Release, 2017, 268, 335-342.	9.9	15
65	Anti-biofouling phosphorylated HEMA and PEGMA block copolymers show high affinity to hydroxyapatite. Colloids and Surfaces B: Biointerfaces, 2017, 160, 289-296.	5.0	7
66	Monitoring Photosynthetic Activity in Microalgal Cells by Raman Spectroscopy with Deuterium Oxide as a Tracking Probe. ChemBioChem, 2017, 18, 2063-2068.	2.6	9
67	Design of Glycopolymers Carrying Sialyl Oligosaccharides for Controlling the Interaction with the Influenza Virus. Biomacromolecules, 2017, 18, 4385-4392.	5.4	52
68	Wide-range p <i>K</i> _a tuning of proton imprinted nanoparticles for reversible protonation of target molecules <i>via</i> thermal stimuli. Journal of Materials Chemistry B, 2017, 5, 9204-9210.	5.8	17
69	SPR study for analysis of a water-soluble glycopolymer interface and molecular recognition properties. Polymer Journal, 2017, 49, 255-262.	2.7	11
70	Poly(<scp><i>N</i></scp> â€isopropylacrylamide) gelâ€based macroporous monolith for continuousâ€flow recovery of palladium(<scp>ll</scp>) ions. Journal of Applied Polymer Science, 2017, 134, .	2.6	11
71	Macroporous Gel with a Permeable Reaction Platform for Catalytic Flow Synthesis. ACS Omega, 2017, 2, 8796-8802.	3.5	17
72	Nanoarchitectonics for Energy and Environment. , 2017, , 279-323.		0

#	Article	IF	CITATIONS
73	Polymer microgel particles as basic catalysts for Knoevenagel condensation in water. Polymer Journal, 2016, 48, 897-904.	2.7	16
74	Polyacrylamide backbones for polyvalent bioconjugates using "post-click―chemistry. Polymer Chemistry, 2016, 7, 5920-5924.	3.9	9
75	Inhibition of Bacterial Adhesion on Hydroxyapatite Model Teeth by Surface Modification with PEGMA-Phosmer Copolymers. ACS Biomaterials Science and Engineering, 2016, 2, 205-212.	5.2	26
76	Design of Synthetic Polymer Nanoparticles That Facilitate Resolubilization and Refolding of Aggregated Positively Charged Lysozyme. Journal of the American Chemical Society, 2016, 138, 4282-4285.	13.7	55
77	Synthesis of well-controlled glycopolymers bearing oligosaccharides and their interactions with influenza viruses. Polymer Journal, 2016, 48, 745-749.	2.7	23
78	Development of glycosaminoglycan mimetics using glycopolymers. Polymer Journal, 2016, 48, 229-237.	2.7	25
79	Glycopolymer Nanobiotechnology. Chemical Reviews, 2016, 116, 1673-1692.	47.7	249
80	Inverse pH-response of Temperature-sensitive Copolymers by Combination with Porous CaCO3 Framework. Chemistry Letters, 2015, 44, 1425-1427.	1.3	1
81	Label-free Detection of Antigen Protein Using a Metal Mesh Device Surface-modified by an Antibody. Analytical Sciences, 2015, 31, 173-176.	1.6	12
82	Optimization of Poly(<i>N</i> -isopropylacrylamide) as an Artificial Amidase. Biomacromolecules, 2015, 16, 411-421.	5.4	24
83	Preparation of nanogel-immobilized porous gel beads for affinity separation of proteins: fusion of nano and micro gel materials. Polymer Journal, 2015, 47, 220-225.	2.7	14
84	Preparation of abiotic polymer nanoparticles for sequestration and neutralization of a target peptide toxin. Nature Protocols, 2015, 10, 595-604.	12.0	46
85	Design of multi-functional linear polymers that capture and neutralize a toxic peptide: a comparison with cross-linked nanoparticles. Journal of Materials Chemistry B, 2015, 3, 1706-1711.	5.8	28
86	Design rationale of thermally responsive microgel particle films that reversibly absorb large amounts of CO ₂ : fine tuning the pK _a of ammonium ions in the particles. Chemical Science, 2015, 6, 6112-6123.	7.4	40
87	Minimization of Synthetic Polymer Ligands for Specific Recognition and Neutralization of a Toxic Peptide. Journal of the American Chemical Society, 2015, 137, 10878-10881.	13.7	22
88	Membrane reactor immobilized with palladiumâ€loaded polymer nanogel for continuousâ€flow Suzuki coupling reaction. AICHE Journal, 2015, 61, 582-589.	3.6	18
89	Polymer-modified gold nanoparticles via RAFT polymerization: a detailed study for a biosensing application. Polymer Chemistry, 2014, 5, 931-939.	3.9	70
90	Temperatureâ€Responsive Microgel Films as Reversible Carbon Dioxide Absorbents in Wet Environment. Angewandte Chemie - International Edition, 2014, 53, 2654-2657.	13.8	71

#	Article	IF	CITATIONS
91	Interaction between synthetic particles and biomacromolecules: fundamental study of nonspecific interaction and design of nanoparticles that recognize target molecules. Polymer Journal, 2014, 46, 537-545.	2.7	32
92	Signal amplified two-dimensional photonic crystal biosensor immobilized with glyco-nanoparticles. Journal of Materials Chemistry B, 2014, 2, 3324-3332.	5.8	27
93	Effect of Physical Properties of Nanogel Particles on the Kinetic Constants of Multipoint Protein Recognition Process. Biomacromolecules, 2014, 15, 541-547.	5.4	25
94	Engineering Nanoparticle Antitoxins Utilizing Aromatic Interactions. Biomacromolecules, 2014, 15, 3290-3295.	5.4	27
95	Metal Mesh Device Sensor Immobilized with a Trimethoxysilane-Containing Glycopolymer for Label-Free Detection of Proteins and Bacteria. ACS Applied Materials & Interfaces, 2014, 6, 13234-13241.	8.0	40
96	Rational Design of Synthetic Nanoparticles with a Large Reversible Shift of Acid Dissociation Constants: Proton Imprinting in Stimuli Responsive Nanogel Particles. Advanced Materials, 2014, 26, 3718-3723.	21.0	46
97	Epitope Discovery for a Synthetic Polymer Nanoparticle: A New Strategy for Developing a Peptide Tag. Journal of the American Chemical Society, 2014, 136, 1194-1197.	13.7	39
98	Novel Detection Technique for Particulate Matter in Air Using Metal Mesh Device Sensors. Chemistry Letters, 2014, 43, 408-410.	1.3	15
99	Biotinylation of Silicon and Nickel Surfaces and Detection of Streptavidin as Biosensor. Langmuir, 2013, 29, 9457-9463.	3.5	36
100	Syntheses of sulfated glycopolymers and analyses of their BACE-1 inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6390-6395.	2.2	15
101	Polymer Nanoparticle–Protein Interface. Evaluation of the Contribution of Positively Charged Functional Groups to Protein Affinity. ACS Applied Materials & Samp; Interfaces, 2013, 5, 374-379.	8.0	61
102	Affinity Separation of Lectins Using Porous Membranes Immobilized with Glycopolymer Brushes Containing Mannose or N-Acetyl-D-Glucosamine. Membranes, 2013, 3, 169-181.	3.0	15
103	Preparation of Palladium-loaded Polymer Nanoparticles with Catalytic Activity for Hydrogenation and Suzuki Coupling Reactions. Chemistry Letters, 2013, 42, 301-303.	1.3	12
104	The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 33-38.	7.1	179
105	Reversible Absorption of CO ₂ Triggered by Phase Transition of Amine-Containing Microand Nanogel Particles. Journal of the American Chemical Society, 2012, 134, 18177-18180.	13.7	129
106	Surface Modification of Siliceous Materials Using Maleimidation and Various Functional Polymers Synthesized by Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Applied Materials & Diterfaces, 2012, 4, 5125-5133.	8.0	28
107	ELISA-Mimic Screen for Synthetic Polymer Nanoparticles with High Affinity to Target Proteins. Biomacromolecules, 2012, 13, 2952-2957.	5.4	52
108	Engineered Synthetic Polymer Nanoparticles as IgG Affinity Ligands. Journal of the American Chemical Society, 2012, 134, 15765-15772.	13.7	83

#	Article	IF	Citations
109	Control of Protein-Binding Kinetics on Synthetic Polymer Nanoparticles by Tuning Flexibility and Inducing Conformation Changes of Polymer Chains. Journal of the American Chemical Society, 2012, 134, 15209-15212.	13.7	7 3
110	Selective Protein Separation Using Siliceous Materials with a Trimethoxysilane-Containing Glycopolymer. ACS Applied Materials & Interfaces, 2012, 4, 411-417.	8.0	37
111	Temperatureâ€Responsive "Catch and Release―of Proteins by using Multifunctional Polymerâ€Based Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 2405-2408.	13.8	145
112	The evolution of plastic antibodies. Journal of Materials Chemistry, 2011, 21, 3517-3521.	6.7	88
113	Synthetic Polymer Nanoparticles with Antibody-like Affinity for a Hydrophilic Peptide. ACS Nano, 2010, 4, 199-204.	14.6	111
114	Recognition, Neutralization, and Clearance of Target Peptides in the Bloodstream of Living Mice by Molecularly Imprinted Polymer Nanoparticles: A Plastic Antibody. Journal of the American Chemical Society, 2010, 132, 6644-6645.	13.7	437
115	Affinity Purification of Multifunctional Polymer Nanoparticles. Journal of the American Chemical Society, 2010, 132, 13648-13650.	13.7	94
116	Design of Synthetic Polymer Nanoparticles that Capture and Neutralize a Toxic Peptide. Small, 2009, 5, 1562-1568.	10.0	98
117	Pulsed Ultrasound Effect on DNA Polymerase Reaction Monitored on a QCM. Chemistry Letters, 2009, 38, 538-539.	1.3	3
118	Peptide Imprinted Polymer Nanoparticles: A Plastic Antibody. Journal of the American Chemical Society, 2008, 130, 15242-15243.	13.7	377
119	Effect of Ultrasound on DNA Polymerase Reactions:Â Monitoring on a 27-MHz Quartz Crystal Microbalance. Biomacromolecules, 2006, 7, 682-685.	5.4	45
120	Control of Hydrolysis and Condensation Activities of Thermolysin by Ultrasound Irradiation. Chemistry Letters, 2005, 34, 1602-1603.	1.3	3
121	RNA-Aligned Film Prepared from an RNA/Lipid Complex. Macromolecular Rapid Communications, 2002, 23, 253-255.	3.9	17
122	Preparations of a RNA-lipid complex film and its physical properties. Nucleic Acids Symposium Series, 2001, 1, 61-62.	0.3	2
123	Equilibrium Distribution Coefficients of Some Nitrate Impurities in Sodium Nitrate from Zone Refining. Separation Science and Technology, 1984, 19, 403-416.	2.5	0
124	Sulfated Glycopolymers for glycosaminoglycan mimics and nanomedicine. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0
125	Polymer Nanoparticles with Uniform Monomer Sequences for Sequence Specific Peptide Recognition. Angewandte Chemie, 0, , .	2.0	1