Qian Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2216022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Basic Helix-Loop-Helix Transcription Factor MYC2 Directly Represses <i>PLETHORA</i> Expression during Jasmonate-Mediated Modulation of the Root Stem Cell Niche in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 3335-3352.	6.6	374
2	<scp>ABI</scp> 4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels. Plant Journal, 2016, 85, 348-361.	5.7	164
3	Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytologist, 2011, 191, 360-375.	7.3	131
4	ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis <i>FLOWERING LOCUS C</i> transcription. Journal of Experimental Botany, 2016, 67, 195-205.	4.8	112
5	<i>Arabidopsis thaliana</i> plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen <i>Alternaria brassicicola</i> . New Phytologist, 2012, 195, 872-882.	7.3	107
6	Smad7 Is Required for the Development and Function of the Heart. Journal of Biological Chemistry, 2009, 284, 292-300.	3.4	99
7	Insights into endoplasmic reticulumâ€associated degradation in plants. New Phytologist, 2020, 226, 345-350.	7.3	51
8	ERAD-related E2 and E3 enzymes modulate the drought response by regulating the stability of PIP2 aquaporins. Plant Cell, 2021, 33, 2883-2898.	6.6	44
9	HRD1-mediated ERAD tuning of ER-bound E2 is conserved between plants and mammals. Nature Plants, 2016, 2, 16094.	9.3	39
10	<i>Phytophthora sojae</i> effector Avr1d functions as an E2 competitor and inhibits ubiquitination activity of GmPUB13 to facilitate infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
11	ERAD Tuning of the HRD1 Complex Component AtOS9 Is Modulated by an ER-Bound E2, UBC32. Molecular Plant, 2017, 10, 891-894.	8.3	24
12	DNA Geminivirus Infection Induces an Imprinted E3 Ligase Gene to Epigenetically Activate Viral Gene Transcription. Plant Cell, 2020, 32, 3256-3272.	6.6	22
13	Ubiquitin ligase <scp>OsRINGzf1</scp> regulates drought resistance by controlling the turnover of <scp>OsPIP2</scp> ;1. Plant Biotechnology Journal, 2022, 20, 1743-1755.	8.3	15
14	Ubiquitination in the rice blast fungus Magnaporthe oryzae: from development and pathogenicity to stress responses. Phytopathology Research, 2022, 4, .	2.4	11
15	Coordinative regulation of ERAD and selective autophagy in plants. Essays in Biochemistry, 2022, 66, 179-188.	4.7	4
16	Approaches to Determine Protein Ubiquitination Residue Types. Methods in Molecular Biology, 2016, 1450, 3-10.	0.9	1