Guodong Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2215909/publications.pdf

Version: 2024-02-01

78	3,142	27	55
papers	citations	h-index	g-index
82	82	82	5541 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Scattering suppression at MOS interface towards high-mobility Si-based field-effect transistors. Materials Science in Semiconductor Processing, 2022, 138, 106308.	1.9	4
2	Cryogenic Mobility Enhancement in Si MOS Devices via SiO ₂ Regrowth. IEEE Transactions on Electron Devices, 2022, 69, 2585-2589.	1.6	4
3	Low-thermal-budget n-type ohmic contacts for ultrathin Si/Ge superlattice materials. Journal Physics D: Applied Physics, 2022, 55, 355110.	1.3	2
4	Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. Science Advances, 2021, 7, .	4.7	35
5	Formation and elimination mechanism of thermal blistering in Al2O3/Si system. Journal of Materials Science, 2021, 56, 17478-17489.	1.7	8
6	Quasi-hydrophilic black silicon photocathodes with inverted pyramid arrays for enhanced hydrogen generation. Nanoscale, 2020, 12, 316-325.	2.8	12
7	Enhancing effects of reduced graphene oxide on photoluminescence of CsPbBr ₃ perovskite quantum dots. Journal of Materials Chemistry C, 2020, 8, 7447-7453.	2.7	9
8	Localized exciton emission in CsPbBr ₃ nanocrystals synthesized with excess bromide ions. Journal of Materials Chemistry C, 2019, 7, 10783-10788.	2.7	8
9	Morphology control of c-Si via facile copper-assisted chemical etching: Managements on etch end-points. Applied Surface Science, 2019, 489, 776-785.	3.1	12
10	Metal-assisted photochemical etching of GaN nanowires: The role of metal distribution. Electrochemistry Communications, 2019, 103, 66-71.	2.3	14
11	Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Applied Physics Letters, 2019, 114, .	1.5	76
12	Semipolar (\$\$ 1ar{1}01 \$\$ 1 1 ¯ 01) InGaN/GaN red–amber–yellow light Journal of Materials Science, 2019, 54, 7780-7788.	1.7	10
13	Horizontal GaN nanowires grown on Si (111) substrate: the effect of catalyst migration and coalescence. Nanotechnology, 2019, 30, 045604.	1.3	4
14	Ultrafast growth of horizontal GaN nanowires by HVPE through flipping the substrate. Nanoscale, 2018, 10, 5888-5896.	2.8	26
15	Crystallographic orientation control and optical properties of GaN nanowires. RSC Advances, 2018, 8, 2181-2187.	1.7	21
16	Direct Growth of AlGaN Nanorod LEDs on Graphene-Covered Si. Materials, 2018, 11, 2372.	1.3	14
17	Multicolored-light emission from InGaN/GaN multiple quantum wells grown by selective-area epitaxy on patterned Si(100) substrates. Journal of Materials Science, 2018, 53, 16439-16446.	1.7	3
18	Impurity resonant state p-doping layer for high-efficiency nitride-based light-emitting diodes. Semiconductor Science and Technology, 2018, 33, 114004.	1.0	4

#	Article	IF	Citations
19	Introducing carbon dots to moderate the blue emission from zinc vanadium oxide hydroxide hydrate nanoplates. RSC Advances, 2018, 8, 20686-20691.	1.7	5
20	Selective-area growth of periodic nanopyramid light-emitting diode arrays on GaN/sapphire templates patterned by multiple-exposure colloidal lithography. Nanotechnology, 2017, 28, 114003.	1.3	5
21	Amorphous GaN@Cu Freestanding Electrode for Highâ€Performance Liâ€lon Batteries. Advanced Functional Materials, 2017, 27, 1701808.	7.8	47
22	Van der Waals epitaxy of GaN-based light-emitting diodes on wet-transferred multilayer graphene film. Japanese Journal of Applied Physics, 2017, 56, 085506.	0.8	23
23	Influence of lateral growth on the optical properties of GaN nanowires grown by hydride vapor phase epitaxy. Journal of Applied Physics, 2017, 122, 205302.	1.1	11
24	Overshoot effects of electron on efficiency droop in InGaN/GaN MQW light-emitting diodes. AIP Advances, 2016, 6, 045219.	0.6	5
25	Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides. Scientific Reports, 2016, 6, 19537.	1.6	21
26	Analysis of Photoluminescence Thermal Quenching: Guidance for the Design of Highly Effective p-type Doping of Nitrides. Scientific Reports, 2016, 6, 32033.	1.6	17
27	Bilayer–metal assisted chemical etching of silicon microwire arrays for photovoltaic applications. AIP Advances, 2016, 6, .	0.6	11
28	Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3 \hat{a} 'yXy) single crystals and photodetector applications. AIP Advances, 2016, 6, .	0.6	64
29	Graphene-assisted growth of high-quality AlN by metalorganic chemical vapor deposition. Japanese Journal of Applied Physics, 2016, 55, 085501.	0.8	20
30	Carrier leakage effect on efficiency droop in InGaN/GaN light-emittingÂdiodes. Modern Physics Letters B, 2016, 30, 1650221.	1.0	3
31	Investigation of Isoelectronic Doping in p-GaN Based on the Thermal Quenching of UVL Band. IEEE Photonics Journal, 2016, 8, 1-7.	1.0	0
32	Co-doping of magnesium with indium in nitrides: first principle calculation and experiment. RSC Advances, 2016, 6, 5111-5115.	1.7	13
33	Super-aligned carbon nanotubes patterned sapphire substrate to improve quantum efficiency of InGaN/GaN light-emitting diodes. Optics Express, 2015, 23, A957.	1.7	10
34	Phosphor-free InGaN micro-pyramid white light emitting diodes with multilayer graphene electrode. RSC Advances, 2015, 5, 100646-100650.	1.7	10
35	Control carrier recombination of multi-scale textured black silicon surface for high performance solar cells. Applied Physics Letters, 2014, 104, 253902.	1.5	19
36	Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon. Applied Physics Letters, 2014, 104, .	1.5	20

#	Article	IF	CITATIONS
37	Mechanisms in thermal stress aided electroless etching of GaN grown on sapphire and approaches to vertical devices. RSC Advances, 2013, 3, 10934.	1.7	4
38	Nitride-based micron-scale hexagonal pyramids array vertical light emitting diodes by N-polar wet etching. Optics Express, 2013, 21, 3547.	1.7	21
39	N-polar GaN etching and approaches to quasi-perfect micro-scale pyramid vertical light-emitting diodes array. Journal of Applied Physics, 2013, 114, 133101.	1.1	20
40	Porous Nanostructures and Thermoelectric Power Measurement of Electro-Less Etched Black Silicon. Journal of Physical Chemistry C, 2012, 116, 13767-13773.	1.5	29
41	Single-Crystalline Sodium-Doped p-Type ZnO and ZnMgO Nanowires via Combination of Thin-Film and Nano Techniques. Journal of Physical Chemistry C, 2011, 115, 19018-19022.	1.5	34
42	Field Electron Emission of ZnO Nanowire Pyramidal Bundle Arrays. Journal of Nanoscience and Nanotechnology, 2010, 10, 2360-2365.	0.9	4
43	p-type conductivity in silicon nanowires induced by heterojunction interface charge transfer. Applied Physics Letters, 2010, 97, .	1.5	22
44	Synthesis of Hierarchical Porous ZnO Disklike Nanostructures for Improved Photovoltaic Properties of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 13157-13161.	1.5	53
45	Tunable Electrical Properties of Silicon Nanowires via Surface-Ambient Chemistry. ACS Nano, 2010, 4, 3045-3052.	7.3	72
46	High-Performance CdSe:In Nanowire Field-Effect Transistors Based on Top-Gate Configuration with High-κ Non-Oxide Dielectrics. Journal of Physical Chemistry C, 2010, 114, 4663-4668.	1.5	21
47	Incorporation of Graphenes in Nanostructured TiO ₂ Films <i>via</i> Molecular Grafting for Dye-Sensitized Solar Cell Application. ACS Nano, 2010, 4, 3482-3488.	7.3	471
48	High-performance, fully transparent, and flexible zinc-doped indium oxide nanowire transistors. Applied Physics Letters, 2009, 94, .	1.5	46
49	ZnO nanowire arrays grown on Al:ZnO buffer layers and their enhanced electron field emission. Journal of Applied Physics, 2009, 106, .	1.1	24
50	p-type conduction in arsenic-doped ZnSe nanowires. Applied Physics Letters, 2009, 95, 033117.	1.5	40
51	Silicon nanowire sensors for Hg2+ and Cd2+ ions. Applied Physics Letters, 2009, 94, .	1.5	83
52	Photoconductive Properties of Selenium Nanowire Photodetectors. Journal of Nanoscience and Nanotechnology, 2009, 9, 6292-6298.	0.9	26
53	Surface Passivation and Transfer Doping of Silicon Nanowires. Angewandte Chemie - International Edition, 2009, 48, 9896-9900.	7.2	57
54	Tuning Electrical and Photoelectrical Properties of CdSe Nanowires via Indium Doping. Small, 2009, 5, 345-350.	5.2	78

#	Article	IF	Citations
55	Fabrication and characterization of p-ZnO/n-Zn0.8Cd0.2O/n-ZnO heterojunction. Solid State Communications, 2009, 149, 290-292.	0.9	3
56	X-ray photoelectron spectroscopy study of Al- and N- co-doped p-type ZnO thin films. Journal of Crystal Growth, 2009, 311, 2341-2344.	0.7	15
57	Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells. Journal of Physical Chemistry C, 2009, 113, 13433-13437.	1.5	174
58	Surface-Enhanced Raman Scattering from Uniform Gold and Silver Nanoparticle-Coated Substrates. Journal of Physical Chemistry C, 2009, 113, 9191-9196.	1.5	38
59	High-Quality Graphenes via a Facile Quenching Method for Field-Effect Transistors. Nano Letters, 2009, 9, 1374-1377.	4.5	92
60	Surfaceâ€Dominated Transport Properties of Silicon Nanowires. Advanced Functional Materials, 2008, 18, 3251-3257.	7.8	180
61	Tunable nâ€Type Conductivity and Transport Properties of Gaâ€doped ZnO Nanowire Arrays. Advanced Materials, 2008, 20, 168-173.	11.1	203
62	p-Type ZnO Nanowire Arrays. Nano Letters, 2008, 8, 2591-2597.	4.5	237
63	p-type conduction in nitrogen-doped ZnS nanoribbons. Applied Physics Letters, 2008, 93, 213102.	1.5	34
64	Single-Crystal 9,10-Diphenylanthracene Nanoribbons and Nanorods. Chemistry of Materials, 2008, 20, 6945-6950.	3.2	71
65	Single zinc-doped indium oxide nanowire as driving transistor for organic light-emitting diode. Applied Physics Letters, 2008, 92, .	1.5	29
66	Hysteresis in In2O3:Zn nanowire field-effect transistor and its application as a nonvolatile memory device. Applied Physics Letters, 2008, 93, 183111.	1.5	13
67	ZnO light-emitting diodes fabricated on Si substrates with homobuffer layers. Applied Physics Letters, 2007, 91, .	1.5	74
68	Electrical characterization of ZnO-based homojunctions. Applied Physics Letters, 2006, 89, 053501.	1.5	56
69	Rapid synthesis of novel flowerlike ZnO structures by thermolysis of zinc acetate. Applied Surface Science, 2006, 253, 909-914.	3.1	11
70	Synthesis and characterization of Al–N codoped p-type ZnO epitaxial films using high-temperature homo-buffer layer. Applied Surface Science, 2006, 253, 1903-1906.	3.1	17
71	Effect of oxygen partial pressure ratios on the properties of Al–N co-doped ZnO thin films. Journal of Crystal Growth, 2005, 274, 178-182.	0.7	12
72	Novel ZnO microballs synthesized via pyrolysis of zinc-acetate in oxygen atmosphere. Journal of Crystal Growth, 2005, 282, 506-512.	0.7	18

#	ARTICLE	IF	CITATION
73	Al–N codoping and p-type conductivity in ZnO using different nitrogen sources. Surface and Coatings Technology, 2005, 198, 354-356.	2.2	15
74	Fabrication and characteristics of ZnO thin films with an Al/Si (100) substrates. Materials Chemistry and Physics, 2005, 93, 170-173.	2.0	16
75	Control of conduction type in Al- and N-codoped ZnO thin films. Applied Physics Letters, 2005, 86, 202106.	1.5	83
76	Gold schottky contacts on n-type ZnO thin films with an Al/Si(100) substrates. Journal of Crystal Growth, 2004, 268, 169-173.	0.7	25
77	p-Type conduction in Al–N co-doped ZnO films. Materials Letters, 2004, 58, 3741-3744.	1.3	31
78	Convertibility of conduction type in Al-N co-doped ZnO thin films based on DC reactive magnetron sputtering. , 0, , .		0