MarÃ-a del Carmen Garrigós

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2215551/publications.pdf

Version: 2024-02-01

83 papers 4,086 citations

33 h-index 62 g-index

86 all docs 86 docs citations

86 times ranked 4961 citing authors

#	Article	IF	CITATIONS
1	Valorization of Aloe vera Skin By-Products to Obtain Bioactive Compounds by Microwave-Assisted Extraction: Antioxidant Activity and Chemical Composition. Antioxidants, 2022, 11, 1058.	5.1	15
2	Influence of Functional Bio-Based Coatings Including Chitin Nanofibrils or Polyphenols on Mechanical Properties of Paper Tissues. Polymers, 2022, 14, 2274.	4.5	4
3	Hemp Stem Epidermis and Cuticle: From Waste to Starter in Bio-Based Material Development. Polymers, 2022, 14, 2816.	4.5	4
4	Emulsions Incorporated in Polysaccharide-Based Active Coatings for Fresh and Minimally Processed Vegetables. Foods, 2021, 10, 665.	4.3	15
5	Antibacterial activity testing methods for hydrophobic patterned surfaces. Scientific Reports, 2021, 11, 6675.	3.3	26
6	Effect of Frying and Roasting Processes on the Oxidative Stability of Sunflower Seeds (Helianthus) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
7	Anthocyanin Hybrid Nanopigments from Pomegranate Waste: Colour, Thermomechanical Stability and Environmental Impact of Polyester-Based Bionanocomposites. Polymers, 2021, 13, 1966.	4.5	12
8	Use of herbs and their bioactive compounds in active food packaging., 2021,, 323-365.		2
9	Multilayer Films Based on Poly(lactic acid)/Gelatin Supplemented with Cellulose Nanocrystals and Antioxidant Extract from Almond Shell By-Product and Its Application on Hass Avocado Preservation. Polymers, 2021, 13, 3615.	4.5	15
10	Valorisation of Mango Peels: Extraction of Pectin and Antioxidant and Antifungal Polyphenols. Waste and Biomass Valorization, 2020, 11, 89-98.	3.4	30
11	Gelatin-Based Antimicrobial Films Incorporating Pomegranate (Punica granatum L.) Seed Juice by-Product. Molecules, 2020, 25, 166.	3.8	31
12	Impact of Olive Extract Addition on Corn Starch-Based Active Edible Films Properties for Food Packaging Applications. Foods, 2020, 9, 1339.	4.3	21
13	Novel Antioxidant Packaging Films Based on Poly($\hat{l}\mu$ -Caprolactone) and Almond Skin Extract: Development and Effect on the Oxidative Stability of Fried Almonds. Antioxidants, 2020, 9, 629.	5.1	20
14	Optimisation of Sequential Microwave-Assisted Extraction of Essential Oil and Pigment from Lemon Peels Waste. Foods, 2020, 9, 1493.	4.3	38
15	Physicochemical and Functional Properties of Active Fish Gelatin-Based Edible Films Added with Aloe Vera Gel. Foods, 2020, 9, 1248.	4.3	20
16	Controlled Release, Disintegration, Antioxidant, and Antimicrobial Properties of Poly (Lactic) Tj ETQq0 0 0 rgBT /	Overlock 1	0 Tf 50 142 T
17	Pectin-Based Films with Cocoa Bean Shell Waste Extract and ZnO/Zn-NPs with Enhanced Oxygen Barrier, Ultraviolet Screen and Photocatalytic Properties. Foods, 2020, 9, 1572.	4.3	25
18	Effect of Chlorophyll Hybrid Nanopigments from Broccoli Waste on Thermomechanical and Colour Behaviour of Polyester-Based Bionanocomposites. Polymers, 2020, 12, 2508.	4.5	9

#	Article	IF	Citations
19	Controlled Release of Thymol from Poly(Lactic Acid)-Based Silver Nanocomposite Films with Antibacterial and Antioxidant Activity. Antioxidants, 2020, 9, 395.	5.1	38
20	Encapsulation of Bioactive Compounds from Aloe Vera Agrowastes in Electrospun Poly (Ethylene) Tj ETQq0 0 0 rg	gBŢ <u>.</u> ¦Over	lock 10 Tf 50
21	Effect of Lemon Waste Natural Dye and Essential Oil Loaded into Laminar Nanoclays on Thermomechanical and Color Properties of Polyester Based Bionanocomposites. Polymers, 2020, 12, 1451.	4.5	11
22	Recent Trends in the Use of Pectin from Agro-Waste Residues as a Natural-Based Biopolymer for Food Packaging Applications. Materials, 2020, 13, 673.	2.9	191
23	Biodegradable Poly(ε-Caprolactone) Active Films Loaded with MSU-X Mesoporous Silica for the Release of α-Tocopherol. Polymers, 2020, 12, 137.	4.5	14
24	Effect of Almond Shell Waste on Physicochemical Properties of Polyester-Based Biocomposites. Polymers, 2020, 12, 835.	4.5	18
25	Recent Trends in the Analysis of Chemical Contaminants in Beverages. Beverages, 2020, 6, 32.	2.8	7
26	INNOVATIVE LEARNING METHODOLOGIES FOR THE STUDIES ON FORENSIC SCIENCES. INTED Proceedings, 2020, , .	0.0	0
27	ICT SKILLS DEVELOPMENT AND THE INTEGRATION OF MOBILE APPLICATIONS IN THE TEACHING AND LEARNING OF CHEMISTRY. , 2020, , .		0
28	EVALUATION OF SENIOR STUDENTS AS PEER MENTORS IN CHEMISTRY EDUCATION: A TEACHING EXPERIENCE. , 2020, , .		0
29	Il-based advanced techniques for the extraction of value-added compounds from natural sources and food by-products. TrAC - Trends in Analytical Chemistry, 2019, 119, 115616.	11.4	20
30	Optimization of Microwave-Assisted Extraction of Phenolic Compounds with Antioxidant Activity from Carob Pods. Food Analytical Methods, 2019, 12, 2480-2490.	2.6	37
31	Reducing off-Flavour in Commercially Available Polyhydroxyalkanoate Materials by Autooxidation through Compounding with Organoclays. Polymers, 2019, 11, 945.	4.5	6
32	Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds. Food Chemistry, 2019, 292, 176-187.	8.2	86
33	Microwave-Assisted Green Synthesis and Antioxidant Activity of Selenium Nanoparticles Using Theobroma Cacao L. Bean Shell Extract. Molecules, 2019, 24, 4048.	3.8	84
34	Cellulose acetate/AgNPs-organoclay and/or thymol nano-biocomposite films with combined antimicrobial/antioxidant properties for active food packaging use. International Journal of Biological Macromolecules, 2019, 121, 508-523.	7.5	125
35	Analytical methods combined with multivariate analysis for authentication of animal and vegetable food products with high fat content. Trends in Food Science and Technology, 2018, 77, 120-130.	15.1	43
36	Basic and Applied Concepts of Edible Packaging for Foods. , 2018, , 1-61.		31

#	Article	IF	CITATIONS
37	Recent Trends in Microencapsulation for Smart and Active Innovative Textile Products. Current Organic Chemistry, 2018, 22, 1237-1248.	1.6	20
38	ANALYSIS OF THE APPROACH TO COMPANIES OF STUDENTS OF FOOD TECHNOLOGY. FROM THEORY TO PRACTICE. EDULEARN Proceedings, 2018, , .	0.0	0
39	USING GROUP DYNAMICS TO DEVELOP COMPETENCIES RELATED TO LEADERSHIP, DECISION MAKING AND TEAM MANAGEMENT FOR NOVEL STUDENTS. EDULEARN Proceedings, 2018, , .	0.0	O
40	Active Nanocomposites in Food Contact Materials. Sustainable Agriculture Reviews, 2017, , 1-44.	1.1	4
41	Multifunctional antimicrobial nanocomposites for food packaging applications. , 2017, , 265-303.		9
42	State of the Art of Antimicrobial Edible Coatings for Food Packaging Applications. Coatings, 2017, 7, 56.	2.6	151
43	Polymers Extracted from Biomass. , 2016, , .		1
44	Packaging for Drinks. , 2016, , .		1
45	Carvacrol-Based Films. , 2016, , 329-338.		7
46	Gelatin-Based Films and Coatings for Food Packaging Applications. Coatings, 2016, 6, 41.	2.6	230
47	Characterization and disintegrability under composting conditions of PLA-based nanocomposite films with thymol and silver nanoparticles. Polymer Degradation and Stability, 2016, 132, 2-10.	5.8	54
48	Active edible films: Current state and future trends. Journal of Applied Polymer Science, 2016, 133, .	2.6	137
49	Multifunctional Applications of Nanocellulose-Based Nanocomposites. , 2016, , 177-204.		8
50	Carbohydrate-Based Advanced Biomaterials for Food Sustainability: A Review. Materials Science Forum, 2016, 842, 182-195.	0.3	11
51	Characterization and enzymatic degradation study of poly(ε-caprolactone)-based biocomposites from almond agricultural by-products. Polymer Degradation and Stability, 2016, 132, 181-190.	5.8	26
52	New Trends in Beverage Packaging Systems: A Review. Beverages, 2015, 1, 248-272.	2.8	63
53	Natural Pectin Polysaccharides as Edible Coatings. Coatings, 2015, 5, 865-886.	2.6	151
	Microwave-Assisted Extraction of Phenolic Compounds from Almond Skin Byproducts (<i>Prunus) Tj ETQq0 0 0</i>	rgBT /Ove	rlock 10 Tf 50

63, 5395-5402.

#	Article	IF	CITATIONS
55	Monitoring the oxidative stability and volatiles in blanched, roasted and fried almonds under normal and accelerated storage conditions by DSC, thermogravimetric analysis and ATRâ€FTIR. European Journal of Lipid Science and Technology, 2015, 117, 1199-1213.	1.5	42
56	Use of herbs, spices and their bioactive compounds in active food packaging. RSC Advances, 2015, 5, 40324-40335.	3.6	99
57	Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 2014, 121, 94-101.	5.2	112
58	Influence of thymol and silver nanoparticles on the degradation of poly(lactic acid) based nanocomposites: Thermal and morphological properties. Polymer Degradation and Stability, 2014, 108, 158-165.	5.8	60
59	Characterization of Poly(ε-caprolactone)-Based Nanocomposites Containing Hydroxytyrosol for Active Food Packaging. Journal of Agricultural and Food Chemistry, 2014, 62, 2244-2252.	5.2	50
60	Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chemistry, 2014, 162, 149-155.	8.2	162
61	Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polymer Degradation and Stability, 2014, 108, 269-279.	5.8	59
62	Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films. LWT - Food Science and Technology, 2014, 58, 470-477.	5.2	128
63	Natural additives and agricultural wastes in biopolymer formulations for food packaging. Frontiers in Chemistry, 2014, 2, 6.	3.6	128
64	Characterization and Classification of Almond Cultivars by Using Spectroscopic and Thermal Techniques. Journal of Food Science, 2013, 78, C138-44.	3.1	21
65	Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. Journal of Food Engineering, 2013, 114, 486-494.	5.2	150
66	Carvacrol and Thymol for Fresh Food Packaging. Journal of Bioequivalence & Bioavailability, 2013, 05, .	0.1	35
67	Relationship between morphology, properties and degradation parameters ofÂnovative biobased thermoplastic polyurethanes obtained from dimer fatty acids. Polymer Degradation and Stability, 2012, 97, 1964-1969.	5.8	98
68	Structure and Morphology of New Bioâ€Based Thermoplastic Polyurethanes Obtained From Dimeric Fatty Acids. Macromolecular Materials and Engineering, 2012, 297, 777-784.	3.6	62
69	Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering, 2012, 109, 513-519.	5.2	327
70	Antibacterial biofilms based on calcium caseinate incorporated with carvacrol., 2012,,.		0
71	Monitoring the oxidation of almond oils by HS-SPME–GC–MS and ATR-FTIR: Application of volatile compounds determination to cultivar authenticity. Food Chemistry, 2011, 126, 603-609.	8.2	54
72	Characterization and thermal stability of poly(vinyl chloride) plasticized with epoxidized soybean oil for food packaging. Polymer Degradation and Stability, 2010, 95, 2207-2212.	5.8	200

#	Article	IF	CITATIONS
73	Migration analysis of epoxidized soybean oil and other plasticizers in commercial lids for food packaging by gas chromatography–mass spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27, 1469-1477.	2.3	24
74	Determination of residual styrene monomer in polystyrene granules by gas chromatography–mass spectrometry. Journal of Chromatography A, 2004, 1061, 211-216.	3.7	48
75	Optimization of parameters for the supercritical fluid extraction in the determination of N-nitrosamines in rubbers. Journal of Chromatography A, 2002, 963, 419-426.	3.7	33
76	Determination of aromatic amines formed from azo colorants in toy products. Journal of Chromatography A, 2002, 976, 309-317.	3.7	60
77	Optimization of the extraction of azo colorants used in toy products. Journal of Chromatography A, 2002, 963, 427-433.	3.7	27
78	Determination of N-nitrosamines in latex by sequential supercritical fluid extraction and derivatization. Journal of Chromatography A, 2002, 976, 301-307.	3.7	7
79	Simultaneous supercritical fluid derivatization and extraction of formaldehyde by the Hantzsch reaction. Journal of Chromatography A, 2000, 896, 51-59.	3.7	22
80	Optimization of parameters for the analysis of aromatic amines in finger-paints. Journal of Chromatography A, 2000, 896, 291-298.	3.7	16
81	Determination of some aromatic amines in finger-paints for children's use by supercritical fluid extraction combined with gas chromatography. Journal of Chromatography A, 1998, 819, 259-266.	3.7	30
82	Microencapsulation of Natural Antioxidant Compounds Obtained from Biomass Wastes: A Review. Materials Science Forum, 0, 875, 112-126.	0.3	4
83	Chemical Composition and Bioactive Antioxidants Obtained by Microwave-Assisted Extraction of Cyperus esculentus L. By-products: A Valorization Approach. Frontiers in Nutrition, 0, 9, .	3.7	4