Šarūnas MeÅ;kinis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2213886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cobalt-Activated Transfer-Free Synthesis of the Graphene on Si(100) by Anode Layer Ion Source. Processes, 2022, 10, 272.	2.8	0
2	Direct synthesis of graphene on silicon by reactive magnetron sputtering deposition. Surface and Coatings Technology, 2022, 437, 128361.	4.8	6
3	Structural and Chemical Peculiarities of Nitrogen-Doped Graphene Grown Using Direct Microwave Plasma-Enhanced Chemical Vapor Deposition. Coatings, 2022, 12, 572.	2.6	0
4	The Graphene Structure's Effects on the Current-Voltage and Photovoltaic Characteristics of Directly Synthesized Graphene/n-Si(100) Diodes. Nanomaterials, 2022, 12, 1640.	4.1	5
5	The direct growth of planar and vertical graphene on Si(100) <i>via</i> microwave plasma chemical vapor deposition: synthesis conditions effects. RSC Advances, 2022, 12, 18759-18772.	3.6	9
6	The evolution of properties with deposition time of vertical graphene nanosheets produced by microwave plasma-enhanced chemical vapor deposition. Surfaces and Interfaces, 2021, 27, 101529.	3.0	2
7	Ultrafast relaxation dynamics of aluminum nanoparticles in solution. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113795.	2.7	6
8	Multiwavelength Raman Scattering Spectroscopy Study of Graphene Synthesized on Si(100) and SiO 2 by Microwave Plasmaâ€Enhanced Chemical Vapor Deposition. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900462.	2.4	4
9	Catalyst-Less and Transfer-Less Synthesis of Graphene on Si(100) Using Direct Microwave Plasma Enhanced Chemical Vapor Deposition and Protective Enclosures. Materials, 2020, 13, 5630.	2.9	13
10	Structure and optical properties of diamond like carbon films containing aluminium and alumina. Applied Surface Science, 2020, 529, 147040.	6.1	11
11	Diamond Like Carbon Films Containing Si: Structure and Nonlinear Optical Properties. Materials, 2020, 13, 1003.	2.9	67
12	Hydrogen-Free Diamond Like Carbon Films with Embedded Cu Nanoparticles: Structure, Composition and Reverse Saturable Absorption Effect. Materials, 2020, 13, 760.	2.9	4
13	Transient absorption spectroscopy as a promising optical tool for the quality evaluation of graphene layers deposited by microwave plasma. Surface and Coatings Technology, 2020, 395, 125887.	4.8	7
14	Electrical transport properties of a carbon nanostructure obtained by plasma-enhanced chemical vapor deposition during thermal cycling. Journal of the Belarusian State University Physics, 2020, , 89-96.	0.2	1
15	Effect of oxidation of copper nanoparticles on absorption spectra of DLC:Cu nanocomposites. Diamond and Related Materials, 2019, 99, 107538.	3.9	17
16	Self-Saturable Absorption and Reverse-Saturable Absorption Effects in Diamond-Like Carbon Films with Embedded Copper Nanoparticles. Coatings, 2019, 9, 100.	2.6	7
17	Diamond like carbon films with embedded Cu nanoclusters deposited by reactive high power impulse magnetron sputtering: Pulse length effects. Thin Solid Films, 2019, 673, 1-6.	1.8	3
18	Giant Negative Piezoresistive Effect in Diamond-like Carbon and Diamond-like Carbon-Based Nickel Nanocomposite Films Deposited by Reactive Magnetron Sputtering of Ni Target. ACS Applied Materials & Interfaces, 2018, 10, 15778-15785.	8.0	12

#	Article	IF	CITATIONS
19	Diamond like carbon Ag nanocomposites as a control measure against Campylobacter jejuni and Listeria monocytogenes on food preparation surfaces. Diamond and Related Materials, 2018, 81, 118-126.	3.9	16
20	Diamond like carbon nanocomposites with embedded metallic nanoparticles. Reports on Progress in Physics, 2018, 81, 024501.	20.1	45
21	Linear and Nonlinear Absorption Properties of Diamond-Like Carbon Doped With Cu Nanoparticles. Plasmonics, 2017, 12, 47-58.	3.4	14
22	Photovoltaic Properties and Ultrafast Plasmon Relaxation Dynamics of Diamond-Like Carbon Nanocomposite Films with Embedded Ag Nanoparticles. Nanoscale Research Letters, 2017, 12, 288.	5.7	12
23	Structure and density profile of diamond-like carbon films containing copper: Study by X-ray reflectivity, transmission electron microscopy, and spectroscopic ellipsometry. Thin Solid Films, 2017, 630, 48-58.	1.8	15
24	Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor. Beilstein Journal of Nanotechnology, 2017, 8, 145-158.	2.8	25
25	Optical Properties of DLC:SiOx and Ag Multilayer Films: Surface Plasmon Resonance Effect. Medziagotyra, 2016, 22, .	0.2	1
26	Plasmonic Properties of Nanostructured Diamond Like Carbon/Silver Nanocomposite Films with Nanohole Arrays. Medziagotyra, 2016, 22, .	0.2	3
27	Effects of the High Power Pulsed Magnetron Sputtering Deposition Conditions on Structure of Diamond Like Carbon:Cu Films. Journal of Nanoscience and Nanotechnology, 2016, 16, 10133-10142.	0.9	7
28	Surface Enhanced Raman Scattering Effect in Diamond Like Carbon Films Containing Ag Nanoparticles. Journal of Nanoscience and Nanotechnology, 2016, 16, 10143-10151.	0.9	12
29	Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver. Nanoscale Research Letters, 2016, 11, 146.	5.7	37
30	Characterization of urea derived polymeric carbon nitride and resultant thermally vacuum deposited amorphous thin films: Structural, chemical and photophysical properties. Carbon, 2016, 107, 415-425.	10.3	22
31	Spectroellipsometric characterization and modeling of plasmonic diamond-like carbon nanocomposite films with embedded Ag nanoparticles. Nanoscale Research Letters, 2015, 10, 157.	5.7	21
32	Multiwavelength Raman analysis of SiOx and N containing amorphous diamond like carbon films. Thin Solid Films, 2015, 581, 86-91.	1.8	9
33	Piezoresistive properties of diamond like carbon films containing copper. Diamond and Related Materials, 2015, 60, 20-25.	3.9	16
34	Optical properties of diamond like carbon films containing copper, grown by high power pulsed magnetron sputtering and direct current magnetron sputtering: Structure and composition effects. Thin Solid Films, 2015, 581, 48-53.	1.8	28
35	Dynamic optical properties of amorphous diamond-like carbon nanocomposite films doped with Cu and Ag nanoparticles. Proceedings of SPIE, 2014, , .	0.8	2
36	Plasmonic properties of silver nanoparticles embedded in diamond like carbon films: Influence of structure and composition. Applied Surface Science, 2014, 317, 1041-1046.	6.1	27

#	Article	IF	CITATIONS
37	Structuring of DLC:Ag nanocomposite thin films employing plasma chemical etching and ion sputtering. Nuclear Instruments & Methods in Physics Research B, 2014, 341, 1-6.	1.4	13
38	Bias effects on structure and piezoresistive properties of DLC:Ag thin films. Surface and Coatings Technology, 2014, 255, 84-89.	4.8	28
39	Structure of the silver containing diamond like carbon films: Study by multiwavelength Raman spectroscopy and XRD. Diamond and Related Materials, 2013, 40, 32-37.	3.9	21
40	Piezoresistive properties of amorphous carbon based nanocomposite thin films deposited by plasma assisted methods. Thin Solid Films, 2013, 538, 78-84.	1.8	20
41	Surface morphology, cohesive and adhesive properties of amorphous hydrogenated carbon nanocomposite films. Applied Surface Science, 2013, 276, 543-549.	6.1	10
42	Current-Voltage Characteristics of the Metal / Organic Semiconductor / Metal Structures: Top and Bottom Contact Configuration Case. Medziagotyra, 2013, 19, .	0.2	0
43	Application of holographic sub-wavelength diffraction gratings for monitoring of kinetics of bioprocesses. Applied Surface Science, 2012, 258, 9292-9296.	6.1	22
44	Piezoresistive and electrical properties of Cr containing diamond-like carbon films. Surface and Coatings Technology, 2012, 211, 80-83.	4.8	12
45	Piezoresistive properties and structure of hydrogen-free DLC films deposited by DC and pulsed-DC unbalanced magnetron sputtering. Surface and Coatings Technology, 2012, 211, 172-175.	4.8	13
46	Carrier gas and ion beam parameter effects on the structure and properties of a-C:H/SiOx films deposited employing closed drift ion beam source. Nuclear Instruments & Methods in Physics Research B, 2012, 282, 116-120.	1.4	12
47	Modulation of monochromatic terahertz radiation in transmission and reflection modes using planar metamaterial. Electronics Letters, 2011, 47, 503.	1.0	2
48	lon beam deposition of amorphous hydrogenated carbon films on amorphous silicon interlayer: Experiment and simulation. Diamond and Related Materials, 2011, 20, 693-702.	3.9	4
49	Structure, Properties and Applications of Diamond Like Nanocomposite (SiOx Containing DLC) Films: A Review. Medziagotyra, 2011, 17, .	0.2	19
50	Influence of Plasma Transferred Arc Process Parameters on Structure and Mechanical Properties of Wear Resistive NiCrBSi-WC/Co Coatings. Medziagotyra, 2011, 17, 140-144.	0.2	5
51	Refractive index sensor based on the diamond like carbon diffraction grating. Thin Solid Films, 2011, 519, 4082-4086.	1.8	12
52	Multilayer amorphous hydrogenated carbon (a-C:H) and SiOx doped a-C:H films for optical applications. Thin Solid Films, 2011, 519, 4004-4007.	1.8	8
53	Low energy X-ray radiation impact on coated Si constructions. Radiation Physics and Chemistry, 2010, 79, 1031-1038.	2.8	1
54	lon beam energy effects on structure and properties of diamond like carbon films deposited by closed drift ion source. Vacuum, 2010, 84, 1133-1137	3.5	11

#	Article	IF	CITATIONS
55	Piezoresistive, optical and electrical properties of diamond like carbon and carbon nitride films. Diamond and Related Materials, 2010, 19, 1249-1253.	3.9	13
56	Optical properties of diamond like carbon and diamond like nanocomposite films. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2817-2819.	0.8	2
57	Growth of ITO thin films by magnetron sputtering: OES study, opticaland electrical properties. Vacuum, 2009, 83, S118-S120.	3.5	10
58	Growth and properties of the ion beam deposited SiOx containing DLC films. Vacuum, 2009, 83, S121-S123.	3.5	12
59	Radiation induced changes in amorphous hydrogenated DLC films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 152, 91-95.	3.5	16
60	Optical properties of diamondâ€like carbon films irradiated by Xâ€ray photons. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3414-3416.	0.8	1
61	Electrical and piezoresistive properties of ion beam deposited DLC films. Applied Surface Science, 2008, 254, 5252-5256.	6.1	24
62	Ion beam energy effects on structure and properties of SiOx doped diamond-like carbon films. Surface and Coatings Technology, 2008, 202, 2328-2331.	4.8	9
63	SiOx-doped DLC films: Charge transport, dielectric properties and structure. Vacuum, 2008, 82, 617-622.	3.5	9
64	Diamond like Carbon Films: Growth and Characterization. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 225-240.	0.3	0
65	Electrical properties of the diamond like carbon films irradiated with high energy photons. Journal of Physics: Conference Series, 2008, 100, 072036.	0.4	4
66	Hydrophobic properties of the ion beam deposited DLC films containing SiOx. Thin Solid Films, 2007, 515, 7615-7618.	1.8	34
67	XRD Analysis of Plasma Sprayed YSZ-NiO-Ni Ceramic Coatings. Plasma Processes and Polymers, 2007, 4, S181-S184.	3.0	8
68	<title>Optical properties of the undoped and SiO<formula><inf><roman>x</roman></inf></formula> doped DLC films</title> ., 2006, , .		4
69	Synthesis of the silicon and silicon oxide doped a-C:H films from hexamethyldisiloxane vapor by DC ion beam. Surface and Coatings Technology, 2006, 200, 6240-6244.	4.8	33
70	XPS study of the a-C:H/Ti and a-C:H/a-Si interfaces. Vacuum, 2006, 80, 1007-1011.	3.5	17
71	Ion beam synthesis of the diamond like carbon films for nanoimprint lithography applications. Thin Solid Films, 2006, 515, 636-639.	1.8	39
72	XPS study of the ultrathin a-C:H films deposited onto ion beam nitrided AISI 316 steel. Applied Surface Science, 2005, 249, 295-302.	6.1	28

5

#	Article	IF	CITATIONS
73	Photoluminescence and XPS Study of Selenium Treated Porous Silicon. , 2005, , 371-374.		1
74	Effects of low-energy ion beam glancing angle nitridation on nGaAs surface and Co–nGaAs Schottky contact properties. Vacuum, 2004, 77, 79-86.	3.5	12
75	Mechanical properties of ion beam deposited carbon films. Carbon, 2004, 42, 1085-1088.	10.3	14
76	Reduction of effective barrier height and low-frequency noise of Al–GaAs Schottky contacts by hydrocarbon ion beam irradiation. Solid-State Electronics, 2003, 47, 1713-1718.	1.4	3
77	Direct ion beam deposited carbon films and clusters. Vacuum, 2003, 72, 193-198.	3.5	7
78	Low resistance AlÂnGaAs ohmic contacts. Semiconductor Science and Technology, 2002, 17, 907-910.	2.0	1
79	Fabrication of photonic structures by means of interference lithography and reactive ion etching. Applied Surface Science, 2002, 186, 599-603.	6.1	12
80	Ion beam synthesis of $\hat{I}\pm$ -CNx:H films. Surface and Coatings Technology, 2002, 151-152, 180-183.	4.8	17
81	<title>Al-nGaAs ohmic contact formation by H2SeO3 treatment and annealing</title> ., 2001, , .		0
82	Replication technology for photonic band gap applications. Optical Materials, 2001, 17, 15-18.	3.6	12
83	Aluminium oxide film for 2D photonic structure: room temperature formation. Optical Materials, 2001, 17, 343-346.	3.6	21
84	<title>alpha-C:H films for photonic structure fabrication</title> ., 2001, , .		2
85	The Influence of Annealing on Current-Voltage Characteristics of H2SeO3 Treated Al-nGaAs Schottky Contact. Physica Status Solidi A, 2000, 180, 499-505.	1.7	5
86	Effects of selenious acid treatment on GaAs Schottky contacts. Semiconductor Science and Technology, 1999, 14, 168-172.	2.0	4
87	Traps in GaAs detectors (before and after irradiation) and electric field redistribution in excited SI-GaAs. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 395, 94-97.	1.6	7