
Shao-Feng Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2213730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of carbon fiber reinforcement on the mechanical and tribological properties of polyamide6/polyphenylene sulfide composites. Materials & Design, 2013, 44, 493-499.	5.1	147
2	Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydrate Polymers, 2017, 174, 1192-1200.	10.2	140
3	Highly efficient removal of heavy metal ions by carboxymethyl cellulose-immobilized Fe3O4 nanoparticles prepared via high-gravity technology. Carbohydrate Polymers, 2019, 213, 39-49.	10.2	131
4	Continuous preparation of Fe3O4 nanoparticles combined with surface modification by L-cysteine and their application in heavy metal adsorption. Ceramics International, 2016, 42, 4228-4237.	4.8	117
5	Individual and simultaneous electrochemical detection toward heavy metal ions based on L-cysteine modified mesoporous MnFe2O4 nanocrystal clusters. Journal of Alloys and Compounds, 2017, 721, 492-500.	5.5	107
6	Enhanced electrochemical performance for sensing Pb(II) based on graphene oxide incorporated mesoporous MnFe2O4 nanocomposites. Journal of Alloys and Compounds, 2018, 747, 447-454.	5.5	77
7	Interfacial modification of basalt fiber filling composites with graphene oxide and polydopamine for enhanced mechanical and tribological properties. RSC Advances, 2018, 8, 12222-12231.	3.6	67
8	High-gravity continuous preparation of chitosan-stabilized nanoscale zero-valent iron towards Cr(VI) removal. Chemical Engineering Journal, 2020, 390, 124639.	12.7	67
9	SWASV performance toward heavy metal ions based on a high-activity and simple magnetic chitosan sensing nanomaterials. Journal of Alloys and Compounds, 2016, 684, 1-7.	5.5	60
10	Facile preparation of multiscale graphene-basalt fiber reinforcements and their enhanced mechanical and tribological properties for polyamide 6 composites. Materials Chemistry and Physics, 2018, 217, 315-322.	4.0	54
11	Electrochemical detection of As(III) through mesoporous MnFe2O4 nanocrystal clusters by square wave stripping voltammetry. Electrochimica Acta, 2015, 174, 1160-1166.	5.2	48
12	Continuous preparation of Fe3O4 nanoparticles using impinging stream-rotating packed bed reactor and magnetic property thereof. Journal of Alloys and Compounds, 2016, 662, 497-504.	5.5	48
13	Mesoporous MnFe2O4 nanocrystal clusters for electrochemistry detection of lead by stripping voltammetry. Journal of Electroanalytical Chemistry, 2015, 755, 203-209.	3.8	47
14	Continuous preparation of Fe3O4 nanoparticles through Impinging Stream-Rotating Packed Bed reactor and their electrochemistry detection toward heavy metal ions. Journal of Alloys and Compounds, 2016, 671, 354-359.	5.5	45
15	Electrochemical Sensing toward Trace As(III) Based on Mesoporous MnFe2O4/Au Hybrid Nanospheres Modified Glass Carbon Electrode. Sensors, 2016, 16, 935.	3.8	36
16	Effects of graphene oxide sheets-zirconia spheres nanohybrids on mechanical, thermal and tribological performances of epoxy composites. Ceramics International, 2018, 44, 18067-18077.	4.8	34
17	Attaching ZrO2 nanoparticles onto the surface of graphene oxide via electrostatic self-assembly for enhanced mechanical and tribological performance of phenolic resin composites. Journal of Materials Science, 2019, 54, 8247-8261.	3.7	32
18	Thermoforming starchâ€ <i>graft</i> â€polycaprolactone biocomposites via oneâ€pot microwave assisted ring opening polymerization. Journal of Applied Polymer Science, 2009, 113, 2973-2979.	2.6	27

Shao-Feng Zhou

#	Article	IF	CITATIONS
19	Highly efficient removal of Cr(VI) from water based on graphene oxide incorporated flower-like MoS2 nanocomposite prepared in situ hydrothermal synthesis. Environmental Science and Pollution Research, 2020, 27, 13882-13894.	5.3	23
20	Alginate-based ferrofluid and magnetic microsphere thereof. International Journal of Biological Macromolecules, 2010, 47, 654-660.	7.5	22
21	Reinforce the mechanical toughness, heat resistance, and friction and wear resistance of phenolic resin via constructing self-assembled hybrid particles of graphite oxide and zirconia as nano-fillers. Advanced Composites and Hybrid Materials, 2021, 4, 317-323.	21.1	22
22	Microwave absorption performance of magnetic Fe–Ni–P nanoparticles electrolessly plated on hollow glass microspheres. Materials Chemistry and Physics, 2012, 134, 224-228.	4.0	19
23	Mechanical and tribological properties of polyamide-based composites modified by thermoplastic polyurethane. Journal of Thermoplastic Composite Materials, 2014, 27, 18-34.	4.2	19
24	Attaching SiO2 nanoparticles to GO sheets via amino-terminated hyperbranched polymer for epoxy composites: Extraordinary improvement in thermal and mechanical properties. European Polymer Journal, 2021, 157, 110677.	5.4	17
25	ZrO2-anchored rGO nanohybrid for simultaneously enhancing the wear resistance and anticorrosion performance of multifunctional epoxy coatings. Progress in Organic Coatings, 2022, 166, 106795.	3.9	15
26	Enhanced mechanical, thermal, and tribological performance of 2D-laminated molybdenum disulfide/RGO nanohybrid filling phenolic resin composites. Advanced Composites and Hybrid Materials, 2022, 5, 1206-1220.	21.1	15
27	Polydopamine-coupling of carbon nanotubes onto microscaled basalt fiber to enhancing mechanical, thermal and tribological properties of composite materials. Materials Research Express, 2019, 6, 0850g6.	1.6	13
28	Friction and wear behaviors of polyamide-based composites blended with polyphenylene sulfide. Journal of Thermoplastic Composite Materials, 2014, 27, 977-991.	4.2	11
29	Effect of Flowerâ€Like and Spherical Nanostructured MoS ₂ on the Adsorption Properties of Cr(VI) Ions. ChemistrySelect, 2020, 5, 3023-3032.	1.5	11
30	Tribological performance of electrostatic self-assembly prepared ZrO ₂ @GO nanocomposites using as lubricant additive. Materials Research Express, 2019, 6, 115075.	1.6	10
31	Improving tribological performance of porous oil-impregnated GO/PA6 composites with double lubrication structure. Diamond and Related Materials, 2022, 126, 109062.	3.9	8
32	Preparation and Structure of FeNi Nanoparticles Coated with Ag and its Microwave-Absorption Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 1030-1035.	0.6	6
33	Structure and Properties of Microwave Absorption Ag/Fe3O4 Nanoparticles. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 392-397.	0.6	6
34	Facile in situ preparation of Cu/RGO nanohybrid for enhancing the tribological performance of phenolic resins nanocomposites. Advanced Composites and Hybrid Materials, 2022, 5, 1280-1293.	21.1	5
35	Konjac Clucomannan-Assisted Synthesis of FeNi nanoparticles and Their Magnetic Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 1036-1039.	0.6	4
36	Effects of acrylamide on mechanical and tribological properties of carbon fiber-reinforced epoxy composites. Journal of Composite Materials, 2015, 49, 1461-1469.	2.4	2

#	Article	IF	CITATIONS
37	Microrod-Structured Co-Mn Compound and Its Magnetic Property. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 88-91.	0.6	1
38	Preparation and Magnetic Property of KGM/Fe ₃ O ₄ Nanocomposites. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 635-638.	0.6	0
39	In Situ Synthesis of One-Dimensional Nanocrystalline Iron Materials by Electrodeposition Under Magnetic Field. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 1211-1216.	0.6	0