Debby Gawlitta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2213676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development and Characterization of Gelatinâ€Norbornene Bioink to Understand the Interplay between Physical Architecture and Microâ€Capillary Formation in Biofabricated Vascularized Constructs. Advanced Healthcare Materials, 2022, 11, e2101873.	3.9	28
2	Cardiovascular Tissue Engineering and Regeneration: A Plead for Further Knowledge Convergence. Tissue Engineering - Part A, 2022, 28, 525-541.	1.6	6
3	Acceleration of Bone Regeneration Induced by a Soft allus Mimetic Material. Advanced Science, 2022, 9, e2103284.	5.6	6
4	An <i>In Vitro</i> Model to Test the Influence of Immune Cell Secretome on Mesenchymal Stromal Cell Osteogenic Differentiation. Tissue Engineering - Part C: Methods, 2022, 28, 420-430.	1.1	5
5	High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins. Materials Today Bio, 2021, 12, 100162.	2.6	38
6	Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs. Connective Tissue Research, 2020, 61, 137-151.	1.1	78
7	Layer-specific cell differentiation in bi-layered vascular grafts under flow perfusion. Biofabrication, 2020, 12, 015009.	3.7	43
8	Impact of Endotoxins in Gelatine Hydrogels on Chondrogenic Differentiation and Inflammatory Cytokine Secretion In Vitro. International Journal of Molecular Sciences, 2020, 21, 8571.	1.8	14
9	52. Calcium phosphates with submicron topography enhance human macrophage M2 polarization in vitro. Spine Journal, 2020, 20, S25.	0.6	1
10	Endochondral Bone Regeneration by Non-autologous Mesenchymal Stem Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 651.	2.0	15
11	Gel Casting as an Approach for Tissue Engineering of Multilayered Tubular Structures. Tissue Engineering - Part C: Methods, 2020, 26, 190-198.	1.1	9
12	Prophylaxis of implant-related infections by local release of vancomycin from a hydrogel in rabbits. , 2020, 39, 108-120.		15
13	The chondrogenic differentiation potential of dental pulp stem cells. , 2020, 39, 121-135.		22
14	A Versatile Biosynthetic Hydrogel Platform for Engineering of Tissue Analogues. Advanced Healthcare Materials, 2019, 8, e1900979.	3.9	69
15	Heterotypic Scaffold Design Orchestrates Primary Cell Organization and Phenotypes in Cocultured Small Diameter Vascular Grafts. Advanced Functional Materials, 2019, 29, 1905987.	7.8	82
16	Contrast enhanced computed tomography for real-time quantification of glycosaminoglycans in cartilage tissue engineered constructs. Acta Biomaterialia, 2019, 100, 202-212.	4.1	7
17	Visible Light Cross‣inking of Gelatin Hydrogels Offers an Enhanced Cell Microenvironment with Improved Light Penetration Depth. Macromolecular Bioscience, 2019, 19, e1900098.	2.1	127
18	Complete regeneration of large bone defects in rats with commercially available fibrin loaded with BMP-2. , 2019, 38, 94-105.		18

DEBBY GAWLITTA

#	Article	IF	CITATIONS
19	Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications. Acta Biomaterialia, 2019, 85, 117-130.	4.1	20
20	Effect of donor variation on osteogenesis and vasculogenesis in hydrogel cocultures. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 433-445.	1.3	24
21	Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication, 2018, 10, 034101.	3.7	216
22	Gel casting as an approach for tissue engineering of multilayered tubular structures: Application for urethral reconstruction. European Urology Supplements, 2018, 17, e396-e397.	0.1	0
23	The impact of immune response on endochondral bone regeneration. Npj Regenerative Medicine, 2018, 3, 22.	2.5	37
24	Engineering of a complex bone tissue model with endothelialised channels and capillary-like networks. , 2018, 35, 335-349.		40
25	Ex vivo model unravelling cell distribution effect in hydrogels for cartilage repair. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 65-76.	0.9	25
26	Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Biofabrication, 2017, 9, 015026.	3.7	85
27	Taking the endochondral route to craniomaxillofacial bone regeneration: A logical approach?. Journal of Cranio-Maxillo-Facial Surgery, 2017, 45, 1099-1106.	0.7	27
28	Hyaluronic Acid-Based Hydrogel Coating Does Not Affect Bone Apposition at the Implant Surface in a Rabbit Model. Clinical Orthopaedics and Related Research, 2017, 475, 1911-1919.	0.7	28
29	Inflammation-Induced Osteogenesis in a Rabbit Tibia Model. Tissue Engineering - Part C: Methods, 2017, 23, 673-685.	1.1	17
30	Microstructured β-Tricalcium Phosphate Putty versus Autologous Bone for Repair of Alveolar Clefts in a Goat Model. Cleft Palate-Craniofacial Journal, 2017, 54, 699-706.	0.5	18
31	Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration. Cartilage, 2017, 8, 327-340.	1.4	90
32	A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides. Biomacromolecules, 2016, 17, 2137-2147.	2.6	111
33	Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication, 2016, 8, 035003.	3.7	261
34	Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 315-324.	1.3	26
35	Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair. Trends in Biotechnology, 2016, 34, 394-407.	4.9	599
36	Direct Cell–Cell Contact with Chondrocytes Is a Key Mechanism in Multipotent Mesenchymal Stromal Cell-Mediated Chondrogenesis. Tissue Engineering - Part A, 2015, 21, 2536-2547.	1.6	70

DEBBY GAWLITTA

#	Article	IF	CITATIONS
37	Donor dependence in stem cell-based generation of prevascularized bone tissue constructs. International Journal of Oral and Maxillofacial Surgery, 2015, 44, e250.	0.7	0
38	Decellularized Cartilage-Derived Matrix as Substrate for Endochondral Bone Regeneration. Tissue Engineering - Part A, 2015, 21, 694-703.	1.6	61
39	Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles. Biomaterials, 2015, 37, 174-182.	5.7	153
40	Missed low-grade infection in suspected aseptic loosening has no consequences for the survival of total hip arthroplasty. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 86, 678-83.	1.2	16
41	Selection of an Optimal Antiseptic Solution for Intraoperative Irrigation. Journal of Bone and Joint Surgery - Series A, 2014, 96, 285-291.	1.4	97
42	Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs. Acta Biomaterialia, 2014, 10, 2602-2611.	4.1	123
43	Flow-perfusion interferes with chondrogenic and hypertrophic matrix production by mesenchymal stem cells. Journal of Biomechanics, 2014, 47, 2122-2129.	0.9	35
44	Multipotent Stromal Cells Outperform Chondrocytes on Cartilage-Derived Matrix Scaffolds. Cartilage, 2014, 5, 221-230.	1.4	30
45	Does Implant Coating With Antibacterial-Loaded Hydrogel Reduce Bacterial Colonization and Biofilm Formation in Vitro?. Clinical Orthopaedics and Related Research, 2014, 472, 3311-3323.	0.7	118
46	In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells. Stem Cell Research, 2014, 12, 428-440.	0.3	126
47	The hunt for a replenishable MSC source to create (genetically manipulatable) ectopic human hematopoietic bone marrow niches. Experimental Hematology, 2013, 41, S66.	0.2	0
48	Hypoxia Impedes Hypertrophic Chondrogenesis of Human Multipotent Stromal Cells. Tissue Engineering - Part A, 2012, 18, 1957-1966.	1.6	68
49	Hypoxia Impedes Vasculogenesis of <i>In Vitro</i> Engineered Bone. Tissue Engineering - Part A, 2012, 18, 208-218.	1.6	21
50	InÂvivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(Îμ-caprolactone). Biomaterials, 2012, 33, 4309-4318.	5.7	217
51	Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Acta Biomaterialia, 2011, 7, 1999-2006.	4.1	120
52	Scaffold Porosity and Oxygenation of Printed Hydrogel Constructs Affect Functionality of Embedded Osteogenic Progenitors. Tissue Engineering - Part A, 2011, 17, 2473-2486.	1.6	86
53	Numerical Analysis of Ischemia- and Compression-Induced Injury in Tissue-Engineered Skeletal Muscle Constructs. Annals of Biomedical Engineering, 2010, 38, 570-582.	1.3	9
54	Modulating Endochondral Ossification of Multipotent Stromal Cells for Bone Regeneration. Tissue Engineering - Part B: Reviews, 2010, 16, 385-395.	2.5	82

DEBBY GAWLITTA

#	Article	IF	CITATIONS
55	Zonal Chondrocyte Subpopulations Reacquire Zone-Specific Characteristics during in Vitro Redifferentiation. American Journal of Sports Medicine, 2009, 37, 97-104.	1.9	45
56	The free diffusion of macromolecules in tissue-engineered skeletal muscle subjected to large compression strains. Journal of Biomechanics, 2008, 41, 845-853.	0.9	52
57	Deep Tissue Injury: How Deep is Our Understanding?. Archives of Physical Medicine and Rehabilitation, 2008, 89, 1410-1413.	0.5	137
58	The Influence of Serum-Free Culture Conditions on Skeletal Muscle Differentiation in a Tissue-Engineered Model. Tissue Engineering - Part A, 2008, 14, 161-171.	1.6	44
59	The non-linear mechanical properties of soft engineered biological tissues determined by finite spherical indentation. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11, 585-592.	0.9	16
60	The Influence of Serum-Free Culture Conditions on Skeletal Muscle Differentiation in a Tissue-Engineered Model. Tissue Engineering, 2008, 14, 161-171.	4.9	2
61	Temporal differences in the influence of ischemic factors and deformation on the metabolism of engineered skeletal muscle. Journal of Applied Physiology, 2007, 103, 464-473.	1.2	91
62	The Relative Contributions of Compression and Hypoxia to Development of Muscle Tissue Damage: An In Vitro Study. Annals of Biomedical Engineering, 2007, 35, 273-284.	1.3	138
63	Ischemic Factors and Deformation Influence Metabolism of Engineered Skeletal Muscle. , 2007, , .		0
64	In Vitro Muscle Model Studies. , 2005, , 287-300.		0
65	Evaluation of a Continuous Quantification Method of Apoptosis and Necrosis in Tissue Cultures. Cytotechnology, 2004, 46, 139-150.	0.7	25
66	Properties of engineered vascular constructs made from collagen, fibrin, and collagen–fibrin mixtures. Biomaterials, 2004, 25, 3699-3706.	5.7	276