Kunimasa Saitoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2213616/publications.pdf

Version: 2024-02-01

30047 36008 11,225 386 54 97 citations h-index g-index papers 387 387 387 3799 docs citations times ranked citing authors all docs

#	ARTICLE Analytical expression for mode-coupling coefficient between non-identical step-index cores and its	IF	CITATIONS
1	application to multi-core fiber design within 125- <mmltmath altimg="si3.svg" display="inline" id="d1e879" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mimath math="" mml:mi=""><td>1.0</td><td>3</td></mml:mimath></mmltmath>	1.0	3
2	Multi-Core Fiber Technology for SDM: Coupling Mechanisms and Design. Journal of Lightwave Technology, 2022, 40, 1527-1543.	2.7	20
3	Direct-binary-search algorithm for fabrication-tolerant photonic-crystal-like subwavelength structures and its application to a four-mode waveguide crossing in 2 \hat{l} 4m waveband. Japanese Journal of Applied Physics, 2022, 61, 042003.	0.8	5
4	A Novel Algorithm of Wavefront-Matching Method for Stable and Efficient Design of Si Waveguides. IEEE Photonics Technology Letters, 2022, 34, 359-362.	1.3	0
5	Comparison of Scalar and Vector WFM Method Through the Design of High-Δ Waveguide Lenses. IEEE Photonics Technology Letters, 2022, 34, 533-536.	1.3	O
6	Arbitrary higher-order optical spatial state generation by using spontaneously broken degeneracy modes in helically twisted ring-core hole assisted fibers. Optics Express, 2022, 30, 24565.	1.7	1
7	Low-Loss and Small 2 × 4λ Multiplexers Based on 2 × 2 and 2 × 1 Mach–Zehnder Interferometers With On-Chip Polarization Multiplexing for 400GbE. Journal of Lightwave Technology, 2021, 39, 193-200.	2.7	12
8	A Novel Core Allocation in Heterogeneous Step-Index Multi-Core Fibers With Standard Cladding Diameter. Journal of Lightwave Technology, 2021, 39, 7231-7237.	2.7	6
9	Tunable broadband mode power dividers based on a wavelength-insensitive coupler using the thermo-optic effect for flexible modal power adjustment in a mode-division multiplexing network. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 946.	0.9	1
10	Bayesian direct-binary-search algorithm for the efficient design of mosaic-based power splitters. OSA Continuum, 2021, 4, 1258.	1.8	16
11	High-tolerance CWDM4 wavelength multiplexer based on $2\tilde{A}$ — $2/2\tilde{A}$ — 1 MZ filters with polarization multiplexing. IEICE Electronics Express, 2021, 18, 20210110-20210110.	0.3	1
12	Six-mode scrambler based on cascaded side-wall grating waveguides. Japanese Journal of Applied Physics, 2021, 60, 062002.	0.8	4
13	Broadband silicon four-mode multi/demultiplexer designed by a wavefront matching method. Optics Express, 2021, 29, 27322.	1.7	5
14	Arbitrary polarization and orbital angular momentum generation based on spontaneously broken degeneracy in helically twisted ring-core photonic crystal fibers. Optics Express, 2021, 29, 31689.	1.7	6
15	Modal amplitude and phase estimation of multimode near field patterns based on artificial neural network with the help of grey-wolf-optimizer. Optical Fiber Technology, 2021, 67, 102720.	1.4	6
16	Experimental Demonstration of Broadband Silicon 4-Mode (de)Multiplexer Designed by Wavefront-Matching Method., 2021,,.		0
17	Switchable Mode Converter for Four-Mode MDM System Assisted by Passive Mode Controlling Device Designed by Wavefront Matching Method., 2021,,.		0
18	Design of Resonant-Characteristics-Monitorable Si Wavelength Filter Using Face-To-Face Loop Mirrors For Heterogeneous Integrated Tunable Lasers. , 2021, , .		1

#	Article	IF	CITATIONS
19	Step index 8-core fiber with 125-µm cladding diameter for O-band use. , 2020, , .		O
20	Ultrasmall two-mode dividers based on mosaic structure designed by direct-binary-search algorithm aided by artificial neural network. , 2020, , .		1
21	Control of Group Delay Spread in Randomly-Coupled Multicore Fibers. , 2020, , .		2
22	Spatial Density and Splicing Characteristic Optimized Few-Mode Multi-Core Fiber. Journal of Lightwave Technology, 2020, 38, 4490-4496.	2.7	21
23	High Spatial Density 6-Mode 7-Core Fiber Amplifier for L-Band Operation. Journal of Lightwave Technology, 2020, 38, 2938-2943.	2.7	24
24	Design of small mode-dependent-loss scrambling-type mode (de)multiplexer based on PLC. Optics Express, 2020, 28, 9653.	1.7	8
25	Broadband and compact silicon mode converter designed using a wavefront matching method. Optics Express, 2020, 28, 38196.	1.7	10
26	Geometric-phase-induced arbitrary polarization and orbital angular momentum generation in helically twisted birefringent photonic crystal fiber. Photonics Research, 2020, 8, 1278.	3.4	21
27	Broadband Design of Silicon Photonics Four-Mode (de)Multiplexer by Wavefront Matching Method. , 2020, , .		0
28	Experimental Demonstration of Broadband Silicon Mode Converter Designed by Wavefront-Matching Method., 2020,,.		0
29	Wavefront-matching-method-designed six-mode-exchanger based on grating-like waveguide on silica-PLC platform. , 2020, , .		2
30	Epitaxial Design of GeSn Quantum Wells for Optoelectronic Applications. , 2019, , .		0
31	The Effect of Core Offset on the Mode Converting Characteristics in Twisted Single Mode Fibers. Journal of Lightwave Technology, 2019, 37, 5479-5485.	2.7	14
32	Iterative Unreplicated Parallel Interference Canceler for MDL-Tolerant Dense SDM (12-Core $ ilde{A}-$ 3-Mode) Transmission Over 3000 km. Journal of Lightwave Technology, 2019, 37, 1560-1569.	2.7	14
33	Ultra-Robust Design of Mode (De)Multiplexer Based on Asymmetrical Directional Coupler Using Wire and One-Side Rib Waveguides. , 2019, , .		1
34	1.2 Pb/s Throughput Transmission Using a 160Â\$mu\$m Cladding, 4-Core, 3-Mode Fiber. Journal of Lightwave Technology, 2019, 37, 1798-1804.	2.7	45
35	CMOS-compatible Si-wire polarization beam splitter based on wavelength-insensitive coupler. IEICE Electronics Express, 2019, 16, 20181126-20181126.	0.3	0
36	A Design of Low MDL Scrambling-type PLC 6-mode Multiplexer. , 2019, , .		0

#	Article	IF	CITATIONS
37	3-Mode PLC-Based Mode Dependent Loss Equalizer in MDM Transmission. , 2019, , .		2
38	Nonreciprocity Enhancement of Graphene-on-Si Waveguide using One-Dimensional Photonic Crystal. , 2019, , .		0
39	A Broadband PLC-type Mode Converter Designed by Wavefront Matching Method. , 2019, , .		0
40	Large Capacity Optical Communications by Optical Fibers for Space Division Multiplexing. IEICE Communications Society Magazine, 2019, 13, 166-176.	0.0	1
41	Mode-Dependent Crosstalk Penalty in Few-Mode Multi-Core Fiber Transmission. , 2019, , .		2
42	Fabrication of Ultrasmall Silicon Waveguide Lenses Designed by Wavefront-Matching Method., 2019,,.		0
43	Fabrication of Ultrasmall Silicon Waveguide Lenses Designed by Wavefront-Matching Method. , 2019, , .		1
44	Cladding Diameter Dependence of Inter-Core Crosstalk in Heterogeneous Multicore Fibers. , 2019, , .		2
45	All-Optical Diode Suppressing Broadband Backward Transmission Using Single- and Four-Port Photonic Crystal Cavities. IEEE Photonics Journal, 2019, 11, 1-14.	1.0	6
46	A proposal of Mach–Zehnder mode/wavelength multi/demultiplexer based on Si/silica hybrid PLC platform. Optics Communications, 2019, 433, 168-172.	1.0	4
47	DMD-Unmanaged Long-Haul SDM Transmission Over 2500-km 12-Core × 3-Mode MC-FMF and 6300-km 3-Mode FMF Employing Intermodal Interference Canceling Technique. Journal of Lightwave Technology, 2019, 37, 138-147.	2.7	22
48	A novel Si four-wavelength multiplexer for 100/400GbE using higher-order mode composed of (a)symmetric directional couplers and $TE \cdot 100/400$ sub of $TE \cdot 100/400$ mode converter. Optics Express, 2019, 27, 36286.	1.7	12
49	First Experimental Demonstration of Wavefront-Matching-Method-Designed Silicon Mode Converters. , 2019, , .		1
50	A broadband mode divider with arbitrary branching ratio based on wavelength-insensitive coupler. , 2019, , .		0
51	Microscopic gain analysis of modulation-doped GeSn/SiGeSn quantum wells: epitaxial design toward high-temperature lasing. Optics Express, 2019, 27, 2457.	1.7	3
52	Optimum index profile of few-mode coupled multicore fibers for reducing the group delay spread. Optics Express, 2019, 27, 16281.	1.7	2
53	Scrambling-Type Three-Mode PLC Multiplexer Based on Cascaded Y-Branch Waveguide With Integrated Mode Rotator. Journal of Lightwave Technology, 2018, 36, 1985-1992.	2.7	26
54	Six-Mode Seven-Core Fiber for Repeated Dense Space-Division Multiplexing Transmission. Journal of Lightwave Technology, 2018, 36, 1226-1232.	2.7	52

#	Article	IF	CITATIONS
55	PLC-based mode controlling devices for mode-division-multiplexing. , 2018, , .		0
56	Suppression of Group-Delay Spread in Coupled Two-LP-Mode Four-Core Fiber., 2018,,.		1
57	Development of the Wavefront Matching Method Based on the 3-D Finite-Element Method and Its Application to Si-wire Mode Converters. Journal of Lightwave Technology, 2018, 36, 3652-3659.	2.7	14
58	Dependence of Cladding Diameter on Inter-core Crosstalk in Heterogeneous Multi-core Fibers. , 2018, , .		5
59	Proposal of Si Four-Wavelength Multiplexer Using Higher-Order Mode for 100GbE. , 2018, , .		1
60	Microscopic Gain Analysis of Modulation-Doped GeSn Quantum Well: Epitaxial Design Toward High-Temperature Lasing. , 2018, , .		0
61	1.2 Pb/s Transmission Over a <tex>\$160 mumathrm{m}\$</tex> Cladding, 4-Core, 3-Mode Fiber, Using 368 <tex>\$mathrm{C}+mathrm{L}\$</tex> band PDM-256-QAM Channels., 2018,,.		0
62	Errata to "Full-Vector Finite-Element Beam Propagation Method for Helicoidal Waveguides and its Application to Twisted Photonic Crystal Fibers―[Jul 17 2894-2901]. Journal of Lightwave Technology, 2018, 36, 4211-4212.	2.7	5
63	Novel All-Optical Diode Based on Single-Port and Four-Port Photonic Crystal Cavities. , 2018, , .		1
64	GeSn/SiGeSn Multiple-Quantum-Well Electroabsorption Modulator With Taper Coupler for Mid-Infrared Ge-on-Si Platform. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-8.	1.9	24
65	Beam propagation analysis of optical activity and circular dichroism in helically twisted photonic crystal fiber. Japanese Journal of Applied Physics, 2018, 57, 08PF06.	0.8	7
66	Si-based Mach-Zehnder wavelength/mode multi/demultiplexer for a WDM/MDM transmission system. Optics Express, 2018, 26, 15211.	1.7	22
67	A Review of PLC-Based Broadband Two-Mode Multi/Demultiplexer Designed by Wavefront Matching Method. IEICE Transactions on Electronics, 2018, E101.C, 518-526.	0.3	2
68	Off-axis core transmission characteristics of helically twisted photonic crystal fibers. Optics Letters, 2018, 43, 4935.	1.7	17
69	Non-circular multi-core fibers for super-dense SDM. IEICE Electronics Express, 2018, 15, 20180776-20180776.	0.3	1
70	A Metal-Assisted Silicon Slot Waveguide for Highly Sensitive Gas Detection. IEEE Photonics Journal, 2017, 9, 1-9.	1.0	15
71	Design and Fabrication of Broadband PLC-Based Two-Mode Multi/Demultiplexer Using a Wavefront Matching Method. Journal of Lightwave Technology, 2017, 35, 2252-2258.	2.7	32
72	Low-Loss and Low-DMD 6-Mode 19-Core Fiber With Cladding Diameter of Less Than 250 νm. Journal of Lightwave Technology, 2017, 35, 443-449.	2.7	51

#	Article	IF	Citations
73	Group delay spread analysis of coupled-multicore fibers: A comparison between weak and tight bending conditions. Optics Communications, 2017, 393, 232-237.	1.0	9
74	Wavefront Matching Method Based on Full-Vector Finite-Element Beam Propagation Method for Polarization Control Devices. Journal of Lightwave Technology, 2017, 35, 2840-2845.	2.7	16
75	PLC-Based LP ₁₁ Mode Rotator With Curved Trench Structure Devised From Wavefront Matching Method. IEEE Photonics Technology Letters, 2017, 29, 1063-1066.	1.3	5
76	Long-Haul Dense Space-Division Multiplexed Transmission Over Low-Crosstalk Heterogeneous 32-Core Transmission Line Using a Partial Recirculating Loop System. Journal of Lightwave Technology, 2017, 35, 488-498.	2.7	49
77	Full-Vector Finite-Element Beam Propagation Method for Helicoidal Waveguides and Its Application to Twisted Photonic Crystal Fibers. Journal of Lightwave Technology, 2017, 35, 2894-2901.	2.7	18
78	Few-mode multicore fibers for long-haul transmission line. Optical Fiber Technology, 2017, 35, 19-27.	1.4	60
79	PLC-based mode multi/demultiplexers for mode division multiplexing. Optical Fiber Technology, 2017, 35, 80-92.	1.4	54
80	Group Delay Spread Analysis of Few-Mode, Coupled 3-Core Fibres: Optimum Index Profile and Maximum Transmission Distance for Strong Coupling Regime., 2017,,.		1
81	A compact and low-loss GeSn electroabsorption modulator using vertical multimode interference for mid-infrared Ge-on-Si platform. , 2017, , .		1
82	A proposal of Mach-Zehnder mode multi/demultiplexer for WDM/MDM optical transmission system. , 2017, , .		0
83	Material analysis of GeSn/SiGeSn quantum wells based on many-body theory. , 2017, , .		0
84	Development of fully three-dimensional wavefront matching method and its application to the design of ultrasmall Si mode converters. , $2017, \ldots$		1
85	Coupled W-type four-core fiber with low differential mode group delay for C+L band. , 2017, , .		0
86	Crosstalk Analysis of Heterogeneous Multicore Fibers Using Coupled-Mode Theory. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	22
87	Coiling Size Dependence of Group Delay Spread in Coupled Multicore Fibers Without Intentional Twisting. Journal of Lightwave Technology, 2017, 35, 4559-4566.	2.7	9
88	Beam propagation analysis of optical activity and circular dichroism in helically twisted photonic crystal fiber., 2017,,.		1
89	Proposal of compact three-mode exchanger based on symmetric and asymmetric directional couplers with integrated mode rotator., 2017,,.		0
90	Multicore fiber-based 5-mode multiplexer/demultiplexer., 2017,,.		0

#	Article	IF	CITATIONS
91	Design of a high-forward-transmission all-optical diode based on cascaded side-coupled photonic crystal cavities. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2493.	0.9	6
92	Design and optimization of 32-core rod/trench assisted square-lattice structured single-mode multi-core fiber. Optics Express, 2017, 25, 5119.	1.7	30
93	Optimal design of 4LP-mode multicore fibers for high spatial multiplicity. Optics Express, 2017, 25, 5697.	1.7	20
94	Low-loss, compact, and fabrication-tolerant Si-wire 90° waveguide bend using clothoid and normal curves for large scale photonic integrated circuits. Optics Express, 2017, 25, 9150.	1.7	68
95	A photonic-plasmonic mode converter using mode-coupling-based polarization rotation for metal-inserted silicon platform. IEICE Electronics Express, 2017, 14, 20160989-20160989.	0.3	2
96	One chip, PLC three-mode exchanger based on symmetric and asymmetric directional couplers with integrated mode rotator., 2017 ,,.		4
97	Ultimately low-loss and compact Si wire $90\hat{A}^o$ waveguide bend composed of clothoid and normal curves for dense optical interconnect PICs. , 2017 , , .		0
98	Scrambling-type three-mode multiplexer based on cascaded Y-branch waveguide with integrated mode rotator on PLC platform. , 2017, , .		3
99	Design and Analysis of Weakly- and Strongly-coupled Multicore Fibers. , 2017, , .		2
100	Highly efficient GeSn electroabsorprtion modulator using higher-order-mode for mid-infrared Ge-on-Si platform. , 2017, , .		0
101	Design and optimization of 3-mode \tilde{A} —12-core dual-ring structured few-mode multi-core fiber. Optics Communications, 2016, 381, 30-36.	1.0	8
102	A compact and low-loss PLC-based LPiia/LPiib mode rotator with curved trench structure. , 2016, , .		1
103	A simple design method of reflection-suppressed photonic crystal cavity with asymmetric waveguides. , 2016, , .		0
104	Optimum design of 4LP-mode multicore fibers with low differential mode delay for high spatial multiplicity. , 2016 , , .		0
105	Ultrasmall silicon mode converters designed by wavefront matching method developed for waveguide discontinuity problem. , 2016, , .		3
106	Group delay spread analysis of strongly coupled 3-core fibers: an effect of bending and twisting. Optics Express, 2016, 24, 9583.	1.7	18
107	Design of Homogeneous Trench-Assisted Multi-Core Fibers Based on Analytical Model. Journal of Lightwave Technology, 2016, 34, 4406-4416.	2.7	27
108	Investigation on core selection approach for heterogeneous trench-assisted multi-core fiber. , 2016, , .		0

#	Article	IF	CITATIONS
109	Theoretical Investigation of Six-Mode Multi/Demultiplexer Based on Fused-Type Multicore Fiber Coupler. IEEE Photonics Journal, 2016, 8, 1-8.	1.0	4
110	An Efficient Core Selection Method for Heterogeneous Trench-Assisted Multi-Core Fiber. IEEE Photonics Technology Letters, 2016, 28, 810-813.	1.3	15
111	Wavelength-Dependence of Inter-Core Crosstalk in Homogeneous Multi-Core Fibers. IEEE Photonics Technology Letters, 2016, 28, 27-30.	1.3	48
112	Dense SDM (12-Core x 3-Mode) Transmission Over 527 km With 33.2-ns Mode-Dispersion Employing Low-Complexity Parallel MIMO Frequency-Domain Equalization. Journal of Lightwave Technology, 2016, 34, 196-204.	2.7	51
113	Multicore Fiber Technology. Journal of Lightwave Technology, 2016, 34, 55-66.	2.7	337
114	High-Spatial-Multiplicity Multicore Fibers for Future Dense Space-Division-Multiplexing Systems. Journal of Lightwave Technology, 2016, 34, 1464-1475.	2.7	104
115	Design of a reflection-suppressed all-optical diode based on asymmetric L-shaped nonlinear photonic crystal cavity. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 54.	0.9	8
116	Large-Mode-Area All-Solid Photonic Bandgap Fibers for the Mitigation of Optical Nonlinearities. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 316-322.	1.9	26
117	Heterogeneous 32-core fiber with square-lattice layout for high-density transmissions. , 2016, , .		2
118	Grating Inscription to Few-Mode Multi-Core Optical Fiber. , 2016, , .		0
119	Demonstration of PLC-based six-mode multiplexer for mode division multiplexing transmission. , 2015, , .		12
120	Large-Mode-Area All-Solid Photonic Bandgap Fibers for High Power Fiber Lasers. , 2015, , .		0
121	High-count Multi-Core Fibers for Space-Division Multiplexing with Propagation-Direction Interleaving., 2015,,.		18
122	Enhancement of Optical Nonlinearity in Coupled Resonator Optical Waveguide Based on Slotted 1-D Photonic Crystal Cavity. IEEE Photonics Journal, 2015, 7, 1-8.	1.0	4
123	Few-mode multi-core fibre with highest core multiplicity factor., 2015,,.		25
124	High-spatial-multiplicity multi-core fibres for future dense space-division-multiplexing system. , 2015, , .		10
125	Design method of heterogeneous trench-assisted graded-index few-mode multi-core fiber with low differential mode delay. , 2015, , .		2
126	Quantum-Confined Stark Effect Analysis of GeSn/SiGeSn Quantum Wells for Mid-Infrared Si-Based Electroabsorption Devices Based on Many-Body Theory. IEEE Journal of Quantum Electronics, 2015, 51, 1-7.	1.0	7

#	Article	IF	CITATIONS
127	Few-Mode Multicore Fiber With 36 Spatial Modes (Three Modes (LP\$_{f 01}\$, LP\$_{f 11a}\$, LP\$_{f} Tj ETQq1	1 0,784314 2.7	rgBT /Over
128	Polarizing 50νm core Yb-doped photonic bandgap fiber. Proceedings of SPIE, 2015, , .	0.8	2
129	Large mode area Yb-doped photonic bandgap fiber lasers. , 2015, , .		0
130	Material Gain Analysis of GeSn/SiGeSn Quantum Wells for Mid-Infrared Si-Based Light Sources Based on Many-Body Theory. IEEE Journal of Quantum Electronics, 2015, 51, 1-8.	1.0	12
131	Multicore fiber-based mode multiplexer/demultiplexer. Proceedings of SPIE, 2015, , .	0.8	3
132	Polarizing ytterbium-doped all-solid photonic bandgap fiber with ~1150 ${\rm \hat{A}\mu m^2}$ effective mode area. Optics Express, 2015, 23, 4307.	1.7	14
133	Heterogeneous trench-assisted few-mode multi-core fiber with graded-index profile and square-lattice layout for low differential mode delay. Optics Express, 2015, 23, 17783.	1.7	11
134	PLC-Based Four-Mode Multi/Demultiplexer With LP11 Mode Rotator on One Chip. Journal of Lightwave Technology, 2015, 33, 1161-1165.	2.7	21
135	Three-Dimensional Finite-Element Time-Domain Beam Propagation Method and Its Application to 1-D Photonic Crystal-Coupled Resonator Optical Waveguide. Journal of Lightwave Technology, 2015, 33, 3836-3842.	2.7	5
136	A rigorous definition of nonlinear parameter \hat{I}^3 and effective area A_eff for photonic crystal optical waveguides. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1245.	0.9	8
137	Graded-Index Few-Mode Multi-Core Fiber with Dual-Ring Structure. , 2015, , .		1
138	Comparison of Homogeneous and Heterogeneous 2LP-mode Multicore Fibers for High Spatial Multiplicity. , 2015, , .		0
139	Microscopic Analysis of Quantum-Confined Stark Effect of Group IV Quantum Wells for Mid-Infrared Si-Based Electroabsorption Modulators. , 2015, , .		O
140	Yb-Doped Photonic Bandgap Fiber Lasers with Record Core Diameter. , 2014, , .		0
141	Few-mode multicore fibre with 36 spatial modes (Three modes (LP <inf>01</inf> , LP <inf>11a</inf> ,) Tj ETQq1 1 ().784314 rş	gBT /Overlo
142	PLC-type LP11 mode rotator with single-trench waveguide for mode-division multiplexing transmission. , 2014, , .		5
143	Ultra-Broadband Silicon-Wire Polarization Beam Combiner/Splitter Based on a Wavelength Insensitive Coupler With a Point-Symmetrical Configuration. IEEE Photonics Journal, 2014, 6, 1-8.	1.0	9
144	Large-Mode-Area Yb-Doped Photonic Bandgap Fiber Laser. , 2014, , .		0

#	Article	IF	CITATIONS
145	Multicore Fiber for Space Division Multiplexing. , 2014, , .		2
146	A New and Simple Method for Crosstalk Estimation in Homogeneous Trench-Assisted Multi-Core Fibers. , 2014, , .		6
147	Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers. Optics Express, 2014, 22, 13962.	1.7	77
148	PLC-based LP_11 mode rotator for mode-division multiplexing transmission. Optics Express, 2014, 22, 19117.	1.7	43
149	Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers. Optics Express, 2014, 22, 23007.	1.7	79
150	Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission. Optics Express, 2014, 22, 29321.	1.7	90
151	Four-mode PLC-based mode multi/demultiplexer with LP <inf>11</inf> mode rotator on one chip for MDM transmission. , 2014, , .		2
152	Multi-core to 7 single-core-fibers fan-out device with multi-core fiber pigtail connector. Proceedings of SPIE, 2014, , .	0.8	1
153	Design of Three-Spatial-Mode Ring-Core Fiber. Journal of Lightwave Technology, 2014, 32, 1337-1343.	2.7	88
154	Design Optimization of Large-Mode-Area All-Solid Photonic Bandgap Fibers for High-Power Laser Applications. Journal of Lightwave Technology, 2014, 32, 440-449.	2.7	19
155	Theoretical Investigation of Inter-core Crosstalk Properties in Homogeneous Trench-Assisted Multi-Core Fibers. , 2014, , .		3
156	Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay. Optics Express, 2014, 22, 4329.	1.7	35
157	Three-Dimensional Finite-Element Mode-Solver for Nonlinear Periodic Optical Waveguides and Its Application to Photonic Crystal Waveguides. Journal of Lightwave Technology, 2014, 32, 4011-4019.	2.7	23
158	Dependence of Crosstalk Increase due to Tight Bend on Core Layout of Multi-Core Fiber. , 2014, , .		4
159	Yb-Doped All-Solid Photonic Bandgap Fiber Lasers. , 2014, , .		0
160	Proposal of Coupled Ring Resonator Based on One-Dimensional Photonic Crystal Nanocavity. Journal of Lightwave Technology, 2013, 31, 2565-2569.	2.7	3
161	Transmission Systems Using Multicore Fibers. , 2013, , 617-651.		3
162	TE/TM-Pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguide. IEEE Photonics Journal, 2013, 5, 6600610-6600610.	1.0	46

#	Article	IF	Citations
163	Metallic wall-based plasmon nanocavities with 1-D photonic crystals. , 2013, , .		O
164	Surface plasmon nanocavities composed of metallic wall and 1-D photonic crystal. , 2013, , .		0
165	Optimized Design Method for Bend-Insensitive Heterogeneous Trench-Assisted Multi-Core Fiber With Ultra-Low Crosstalk and High Core Density. Journal of Lightwave Technology, 2013, 31, 2590-2598.	2.7	50
166	A proposal of coupled resonator optical waveguides based on slotted nanobeam cavities., 2013,,.		0
167	Design of highly-nonlinear horizontal slot waveguide with low and flat dispersion. Optics Communications, 2013, 298-299, 180-184.	1.0	4
168	Slow-Light-Enhanced Nonlinear Characteristics in Slot Waveguides Composed of Photonic Crystal Nanobeam Cavities. IEEE Photonics Journal, 2013, 5, 2700309-2700309.	1.0	16
169	Mode-Division Multiplexing Transmission System With DMD-Independent Low Complexity MIMO Processing. Journal of Lightwave Technology, 2013, 31, 2192-2199.	2.7	37
170	Longitudinal Power Decay of a Weakly-Coupled Multi-Core Fiber. IEEE Photonics Technology Letters, 2013, 25, 1270-1273.	1.3	1
171	Design of Few-Mode Fibers for Mode-Division Multiplexing Transmission. IEEE Photonics Journal, 2013, 5, 7201207-7201207.	1.0	31
172	Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission. Optics Express, 2013, 21, 25752.	1.7	99
173	Transmission-Efficient Structures of Bent and Crossing Silicon Slot Waveguides. IEEE Photonics Journal, 2013, 5, 6601809-6601809.	1.0	9
174	Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend. Optics Express, 2013, 21, 5401.	1.7	87
175	409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving. Optics Express, 2013, 21, 16777.	1.7	148
176	Multicore fibers for large capacity transmission. Nanophotonics, 2013, 2, 441-454.	2.9	62
177	All-solid photonic bandgap fibers for fiber laser applications. , 2013, , .		0
178	Structural dependence of nonlinear characteristics in slot waveguides composed of photonic crystal nanobeam cavities. , 2013, , .		0
179	Propagation length and coupling characteristics of a hybrid plasmonic waveguide with a uniform silica layer. , 2013, , .		1
180	Robust single-mode all solid photonic bandgap fibers with core diameter of 50 νm. Proceedings of SPIE, 2013, , .	0.8	0

#	Article	IF	Citations
181	Low-loss and broadband PLC-type mode (de)multiplexer for mode-division multiplexing transmission. , 2013, , .		15
182	Large-mode-area Fibers Enabled by Significant Differential Mode Losses., 2013,,.		0
183	Optimized Design Method for Heterogeneous Trench-assisted Multi-core Fiber. , 2013, , .		0
184	All-solid Photonic Bandgap Fiber with Record Mode Area. , 2013, , .		0
185	Mode Division Multiplexed Transmission with Waveguide Mode Multi/Demultiplexer. The Review of Laser Engineering, 2013, 41, 432.	0.0	O
186	Multicore Fibers for Extremely Large Capacity Transmission. The Review of Laser Engineering, 2013, 41, 399.	0.0	0
187	Low-crosstalk multicore fibers for long-haul transmission. , 2012, , .		11
188	12-core fiber with one ring structure for extremely large capacity transmission. Optics Express, 2012, 20, 28398.	1.7	81
189	Mode-division Multiplexed Transmission with Fiber Mode Couplers. , 2012, , .		17
190	Asymmetric parallel waveguide with mode conversion for mode and wavelength division multiplexing transmission. , 2012, , .		10
191	Large-effective-area uncoupled few-mode multi-core fiber. Optics Express, 2012, 20, B77.	1.7	33
192	Mode area scaling with all-solid photonic bandgap fibers. Optics Express, 2012, 20, 26363.	1.7	71
193	Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650  μm^2. Optics Letters, 2012, 37, 1292.	1.7	27
194	Transmission characteristics of crossing slot-waveguides with finite core-height., 2012,,.		0
195	Compact TE/TM-pass polarizer based on lithium niobate on insulator ridge waveguides. , 2012, , .		3
196	Design and fabrication of LMA low-bending loss leakage channel fibers. , 2012, , .		0
197	Homogeneous and heterogeneous multi-core fibers. , 2012, , .		8
198	Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers. Optics Express, 2012, 20, 15061.	1.7	68

#	Article	lF	Citations
199	A proposal of doubly coupled resonator optical waveguides. , 2012, , .		О
200	Large-effective-area heterogeneous trench-assisted twelve-core fiber under bending condition. , 2012, , .		0
201	Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber. Optics Express, 2012, 20, 15157.	1.7	122
202	All-solid photonic bandgap fibers for high power lasers. Proceedings of SPIE, 2012, , .	0.8	3
203	Investigation of Longitudinal Power Decay of a MCF by using a 50-km Weakly-Coupled Multi-Core Fibre. , 2012, , .		O
204	Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguides and a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission. Journal of Lightwave Technology, 2012, 30, 2421-2426.	2.7	254
205	Mode area scaling for high-power fiber lasers with all-solid photonic bandgap fibers. , 2012, , .		0
206	Design and Fabrication of Large-Mode Area Air-Clad Leakage Channel Fiber With Superior Bending Characteristics. IEEE Photonics Technology Letters, 2012, 24, 1650-1652.	1.3	3
207	Compact polarization rotator based on surface plasmon porariton with low insertion loss. , 2012, , .		1
208	Large Effective-Area Few-Mode Multicore Fiber. IEEE Photonics Technology Letters, 2012, 24, 1941-1944.	1.3	56
209	Crosstalk and Core Density in Uncoupled Multicore Fibers. IEEE Photonics Technology Letters, 2012, 24, 1898-1901.	1.3	152
210	Analytical Expression of Average Power-Coupling Coefficients for Estimating Intercore Crosstalk in Multicore Fibers. IEEE Photonics Journal, 2012, 4, 1987-1995.	1.0	201
211	Three-Dimensional Finite-Element Solutions for Crossing Slot-Waveguides With Finite Core-Height. Journal of Lightwave Technology, 2012, 30, 3394-3400.	2.7	28
212	Recent progress in multi-core fiber design and analysis. , 2012, , .		1
213	Structural Dependence of Group Velocity and Leakage Loss in 1-D Photonic Crystal Coupled Resonator Optical Waveguide With Modulated Mode-Gap. IEEE Photonics Journal, 2012, 4, 300-309.	1.0	5
214	Compact Polarization Rotator Based on Surface Plasmon Polariton With Low Insertion Loss. IEEE Photonics Journal, 2012, 4, 707-714.	1.0	36
215	Large-Effective-Area Uncoupled Few-Mode Multi-Core Fiber. , 2012, , .		5
216	Design and Analysis of Heterogeneous Trench-Assisted Multi-core Fiber under Bending Condition. , 2012, , .		1

#	Article	IF	CITATIONS
217	Large-core Single-mode Solid Photonic Bandgap Fibers. , 2012, , .		O
218	Highly bendable and effectively single-mode all-solid photonic bandgap fiber with large effective area. , 2012, , .		1
219	Advanced Optical Fibers and Their Applications in Fiber Lasers. , 2012, , .		O
220	Propagation Characteristics of LN Photonic Wires., 2012,,.		0
221	Design Principle for Realizing Low Bending Losses in All-Solid Photonic Bandgap Fibers. Journal of Lightwave Technology, 2011, 29, 2428-2435.	2.7	6
222	Limitation on Effective Area of Bent Large-Mode-Area Leakage Channel Fibers. Journal of Lightwave Technology, 2011, 29, 2609-2615.	2.7	25
223	Design of Optical XOR, XNOR, NAND, and OR Logic Gates Based on Multi-Mode Interference Waveguides for Binary-Phase-Shift-Keyed Signal. Journal of Lightwave Technology, 2011, 29, 2836-2846.	2.7	50
224	Understanding formation of photonic bandgap edge for maximum propagation angle in all-solid photonic bandgap fibers. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 453.	0.9	7
225	Strong infrared radiation through passive dispersive wave generation and its control. Applied Optics, 2011, 50, 3475.	2.1	6
226	Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding. Optics Express, 2011, 19, 1713.	1.7	33
227	Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Optics Express, 2011, 19, 3799.	1.7	131
228	Dynamics of Raman soliton during supercontinuum generation near the zero-dispersion wavelength of optical fibers. Optics Express, 2011, 19, 10443.	1.7	27
229	Investigation on multi-core fibers with large Aeff and low micro bending loss. Optics Express, 2011, 19, 10595.	1.7	52
230	A design method of lithium niobate on insulator ridge waveguides without leakage loss. Optics Express, 2011, 19, 15833.	1.7	11
231	Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory. Optics Express, 2011, 19, B102.	1.7	220
232	A large effective area multi-core fiber with an optimized cladding thickness. Optics Express, 2011, 19, B543.	1.7	184
233	Large-effective-area ten-core fiber with cladding diameter of about 200 Î⅓m. Optics Letters, 2011, 36, 4626.	1.7	231
234	Crosstalk behavior of cores in multi-core fiber under bent condition. IEICE Electronics Express, 2011, 8, 385-390.	0.3	35

#	Article	IF	CITATIONS
235	An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction. IEICE Transactions on Communications, 2011, E94-B, 409-416.	0.4	111
236	Crosstalk behavior of multi-core fiber with structural parameter drift in longitudinal direction. IEICE Electronics Express, 2011, 8, 1419-1424.	0.3	5
237	Design of ultra compact all-optical XOR and AND logic gates with low power consumption. Optics Communications, 2011, 284, 3528-3533.	1.0	102
238	Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler. , 2011, , .		87
239	Multi-core Fiber Design and Analysis. , 2011, , .		3
240	Design of large-mode-area microstructured fibers with low bending loss for fiber laser applications. , $2011, \dots$		0
241	Case study of inter-core crosstalk of 7-core fiber depending on bending diameter. , 2011, , .		O
242	Design of One-Dimensional Photonic Crystal Coupled Resonator Optical Waveguides Embedded in Air-Slot Waveguide. , 2011 , , .		0
243	Impact of chirp on spectral recoil of solitons in a defect-core photonic crystal fiber with two zero-dispersion wavelengths. , $2011, , .$		O
244	Octagonal Large-Mode-Area Leakage Channel Fiber with Reduced Bending Loss. , 2010, , .		0
245	Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications. Optical Fiber Technology, 2010, 16, 409-418.	1.4	35
246	Optimization of large-mode-area tapered-index multi-core fibers with high differential mode bending loss for Ytterbium-doped fiber applications. , 2010, , .		2
247	A design method of a fiber-based mode multi/demultiplexer for mode-division multiplexing. Optics Express, 2010, 18, 4709.	1.7	60
248	Analysis of Leakage Losses in One-Dimensional Photonic Crystal Coupled Resonator Optical Waveguide Using 3-D Finite Element Method. Journal of Lightwave Technology, 2010, 28, 2977-2983.	2.7	10
249	Limitation of effective area for large-mode-area all-solid photonic bandgap fibers. , 2010, , .		O
250	Design of all-optical XOR and AND logic gates based on multi-mode interference devices. , 2010, , .		3
251	Design Principle for Low Bending Losses in All-Solid Photonic Bandgap Fibers. , 2010, , .		1
252	Three-dimensional Vector Finite Element Analysis of Leakage Losses in One-dimensional Photonic Crystal Coupled Resonator Optical Waveguides. , 2010, , .		0

#	Article	IF	Citations
253	Realistic Squared-Rods Circular F-Doped Large-Mode- Area Leakage Channel Fibers with Low Bending Loss. , 2010, , .		0
254	Generalized Simple Theory for Estimating Lateral Leakage Loss Behavior in Silicon-on-Insulator Ridge Waveguides. Journal of Lightwave Technology, 2009, 27, 5492-5499.	2.7	8
255	Design of all-solid leakage channel fibers with large mode area and low bending loss. Optics Express, 2009, 17, 4913.	1.7	38
256	Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers. Optics Express, 2009, 17, 7615.	1.7	26
257	Photonic bandgap fibers with resonant structures for tailoring the dispersion. Optics Express, 2009, 17, 11869.	1.7	14
258	Design of miniaturized silicon wire and slot waveguide polarization splitter†based on a resonant tunneling. Optics Express, 2009, 17, 19225.	1.7	67
259	Design of S-Band Erbium-Doped Concentric Dual-Core Photonic Crystal Fiber Amplifiers With ASE Suppression. Journal of Lightwave Technology, 2009, 27, 1725-1733.	2.7	18
260	Coupling Characteristics of Multicore Photonic Crystal Fiber-Based 1\$,imes,\$4 Power Splitters. Journal of Lightwave Technology, 2009, 27, 2062-2068.	2.7	31
261	Genetic-Algorithm Assisted Design of C-Band CROW-Miniaturized PCW Interleaver. Journal of Lightwave Technology, 2009, 27, 2678-2687.	2.7	16
262	Design of Taper Structure for Highly Efficient Coupling Between 1-D Photonic Crystal Coupled Resonator Optical Waveguide and Straight Waveguide. Journal of Lightwave Technology, 2009, 27, 2924-2929.	2.7	5
263	Design of effectively single-mode leakage channel fibers with large mode area and low bending loss. IEICE Electronics Express, 2009, 6, 412-417.	0.3	3
264	Heterogeneous multi-core fibers: proposal and design principle. IEICE Electronics Express, 2009, 6, 98-103.	0.3	248
265	Genetic-Algorithm Assisted Design of C-band Photonic-Crystal Waveguide Interleavers Using Ring Resonators. , 2009, , .		0
266	Bend-Resistant, Single-Stage, S-Band Erbium-Doped Photonic Crystal Fiber Amplifiers. , 2009, , .		0
267	Theoretical design of multi-core photonic crystal fiber based 1×4 power splitters. , 2008, , .		0
268	Reduced lateral leakage losses of TM-like modes in silicon-on-insulator ridge waveguides. Optics Letters, 2008, 33, 2008.	1.7	22
269	Raman amplification characteristics of As_2Se_3 photonic crystal fibers. Optics Letters, 2008, 33, 2431.	1.7	11
270	Tunable Photonic Crystal Fiber Couplers With a Thermo-Responsive Liquid Crystal Resonator. Journal of Lightwave Technology, 2008, 26, 663-669.	2.7	27

#	Article	IF	Citations
271	Structural Optimization of Air-Guiding Photonic Bandgap Fibers for Realizing Ultimate Low Loss Waveguides. Journal of Lightwave Technology, 2008, 26, 1602-1612.	2.7	8
272	A Design Method for Single-Polarization Holey Fibers With Improved Beam Quality Factor. Journal of Lightwave Technology, 2008, 26, 2162-2167.	2.7	2
273	Loss Reduction Mechanism for Coupled Cavity Waveguides in One-Dimensional Photonic Crystals. Journal of Lightwave Technology, 2008, 26, 3461-3467.	2.7	7
274	Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 582.	0.9	35
275	Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers. Optics Express, 2008, 16, 14945.	1.7	15
276	Design of low-loss one-dimensional planar-photonic crystal coupled-cavity waveguides., 2008,,.		0
277	Reduced lateral leakage losses of TM-like modes in silicon-on-insulator ridge waveguides. , 2008, , .		0
278	Design of single-mode leakage channel fibers with large-mode-area and low bending loss. , 2008, , .		0
279	Single-polarization photonic crystal fibers based on resonant coupling phenomenon., 2008,,.		0
280	Highly efficient transmission between 1-D photonic crystal coupled cavity waveguides and straight waveguides. , 2008, , .		0
281	Structural optimization of ultimate low loss air-guiding photonic bandgap fibers. , 2008, , .		0
282	Evaluation of Induced Form-Birefringence and PMD in Dispersion-Compensating Hole-Assisted Fibers. , 2008, , .		0
283	Nonlinearity enhancement and dispersion management in bismuth microstructured fibers with a filled slot defect. , 2008, , .		6
284	Design of Ultra-Small Polarization Splitter Based on Silicon Wire Waveguides. , 2008, , .		2
285	Design of Large Hollow-Core Photonic Band-Gap Fibers with Suppressed Higher-Order Modes. , 2007, , .		1
286	Ultra-Sensitive Thermo-Plasmonic Oscillations in Topologically-Defected Nano-Cylinders: Merging Photons and Electrons for Miniaturization of Fluidic Sensors., 2007,, ITuD4.		0
287	Hollow nano-magnetic resonators mediated by photothermal effects: Towards the realization of highly-tunable mid-infrared negative permeability. , 2007, , .		0
288	Thermo-Plasmonic Resonances in Hybrid Metallo-Dielectric Nano-Particles: Towards Tunable Standalone Nano-Sensors., 2007,,.		0

#	Article	IF	Citations
289	Hollow Nano-Magnetic Resonators Mediated by Photo-Thermal Effects: Towards the Realization of Highly-Tunable Mid-Infrared Negative Permeability. , 2007, , .		О
290	Large-mode-area single-mode holey fiber with low bending losses: Towards high power beam delivery systems. , 2007, , .		0
291	1.3 μm photonic crystal fiber Raman laser. , 2007, , .		0
292	All-Fiber Integrated Assemblies Based on the Resonant Tunneling Effect in Multi-Core Photonic Band-Gap Fibers. , 2007, , .		0
293	Enhanced Thermoplasmonic Oscillations in Metallic Nanostructured Particles for the Realization of Nanofluidic Sensors. IEEE Nanotechnology Magazine, 2007, 6, 549-555.	1.1	6
294	Enhancement of the Stimulated Brillouin Scattering of Higher-Order Acoustic Modes in Hole-Assisted Fibers., 2007,,.		0
295	Radiation dose enhancement in photonic crystal fiber bragg gratings: towards photo-ionization monitoring of irradiation sources in harsh nuclear power reactors. , 2007, , .		0
296	Single-mode air-guiding photonic bandgap fiber with improved broadband transmission characteristics: The benefits of an anti-resonant core design. , 2007, , .		2
297	All-Fiber integrated assemblies based on the resonant tunneling effect in multi-core photonic band-gap fibers. , 2007, , .		0
298	Tunable Photonic Crystal Fiber Couplers Infiltrated with Highly-Thermo-Responsive Liquid Crystal Substances. , 2007, , .		1
299	Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region. Optics Express, 2007, 15, 1794.	1.7	82
300	Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band. Optics Express, 2007, 15, 2654.	1.7	6
301	Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide. Optics Express, 2007, 15, 4268.	1.7	5
302	Nonreciprocal microresonators for the miniaturization of optical waveguide isolators. Optics Express, 2007, 15, 7737.	1.7	71
303	Dispersion, birefringence, and amplification characteristics of newly designed dispersion compensating hole-assisted fibers. Optics Express, 2007, 15, 17724.	1.7	5
304	Realistic Design of Large-Hollow-Core Photonic Band-Gap Fibers With Suppressed Higher Order Modes and Surface Modes. Journal of Lightwave Technology, 2007, 25, 2440-2447.	2.7	12
305	Thermo-plasmonic resonances in hybrid metallo-dielectric nano-particles: Towards tunable standalone nano-sensors., 2007,,.		0
306	Proposal for Miniaturized Interleaver with Flat-Top Passbands Utilizing Coupled-Resonator Optical Waveguide Rings in Photonic Crystals. , 2007, , .		1

#	Article	IF	Citations
307	Numerical Modeling of Cryogenic Temperature Sensors Based on Plasmonic Oscillations in Metallic Nanoparticles Embedded Into Photonic Crystal Fibers. IEEE Photonics Technology Letters, 2007, 19, 324-326.	1.3	10
308	Authors' Reply to "Comments on 'Thermooptical Sensitivity Analysis of Highly Birefringent Polarimetric Sensing Photonic Crystal Fibers With Elliptically Elongated Veins'― IEEE Photonics Technology Letters, 2007, 19, 796-797.	1.3	0
309	Photonic Bandgap Fiber Filter Design Based on Nonproximity Resonant Coupling Mechanism. IEEE Photonics Technology Letters, 2007, 19, 1547-1549.	1.3	4
310	Approximate analytical solutions for nonlinear photonic crystal fibers. Electronics and Communications in Japan, 2007, 90, 19-26.	0.2	0
311	Leakage losses of quasi-phase-matched second-harmonic-generation devices with air gap. Electronics and Communications in Japan, 2007, 90, 11-18.	0.2	0
312	Analysis of a realistic and idealized dispersion compensating photonic crystal fiber Raman amplifier. Optical Fiber Technology, 2007, 13, 174-179.	1.4	15
313	Low-temperature-sensitivity heterostructure photonic-crystal wavelength-selective filter based on ultralow-refractive-index metamaterials. Applied Physics Letters, 2006, 88, 121107.	1.5	5
314	Theoretical prediction of thermooptical and structurally disordered sensitivities in metallo-dielectric photonic crystals. IEEE Photonics Technology Letters, 2006, 18, 898-900.	1.3	1
315	Synthesis of polarization-independent splitters based on highly birefringent dual-core photonic crystal fiber platforms. IEEE Photonics Technology Letters, 2006, 18, 1231-1233.	1.3	23
316	Realization of single-moded broadband air-guiding photonic bandgap fibers. IEEE Photonics Technology Letters, 2006, 18, 1666-1668.	1.3	13
317	Fluidic Sensors Based on Photonic Crystal Fiber Gratings: Impact of the Ambient Temperature. IEEE Photonics Technology Letters, 2006, 18, 2206-2208.	1.3	7
318	Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach. Optics Letters, 2006, 31, 26.	1.7	40
319	Transverse light guides in microstructured optical fibers. Optics Letters, 2006, 31, 314.	1.7	15
320	Thermo-optical sensitivity analysis in photonic crystal circuits based on semiconducting or metallic metamaterial constituents. Optics Letters, 2006, 31, 404.	1.7	8
321	Light-wave guidance through stratified photonic crystal metamaterials synthesized by superinductive layers of metallic nanostrips. Optics Letters, 2006, 31, 1226.	1.7	3
322	Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation. Optics Express, 2006, 14, 893.	1.7	95
323	The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms. Optics Express, 2006, 14, 901.	1.7	45
324	Transverse lightwave circuits in microstructured optical fibers: resonator arrays. Optics Express, 2006, 14, 1439.	1.7	5

#	Article	IF	Citations
325	The impact of elliptical deformations for optimizing the performance of dual-core fluorine-doped photonic crystal fiber couplers. Optics Express, 2006, 14, 1982.	1.7	20
326	Design of air-guiding modified honeycomb photonic band-gap fibers for effectively singlemode operation. Optics Express, 2006, 14, 2404.	1.7	29
327	Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band. Optics Express, 2006, 14, 3528.	1.7	39
328	Apodized photonic crystal waveguide gratings. Optics Express, 2006, 14, 4459.	1.7	16
329	Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters. Optics Express, 2006, 14, 4861.	1.7	7
330	Approximate empirical relations for nonlinear photonic crystal fibers. Optics Express, 2006, 14, 6572.	1.7	26
331	Impact of structural deformations on polarization conversion in high index contrast waveguides. Optics Express, 2006, 14, 7046.	1.7	2
332	Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms. Optics Express, 2006, 14, 7342.	1.7	50
333	Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends. Optics Express, 2006, 14, 11128.	1.7	57
334	Thermooptical sensitivity analysis of highly birefringent polarimetric sensing photonic crystal fibers with elliptically elongated veins. IEEE Photonics Technology Letters, 2006, 18, 1663-1665.	1.3	13
335	Transmission characteristics of laterally illuminated photonic crystal fibers. IEICE Electronics Express, 2006, 3, 70-73.	0.3	3
336	A design method for single-mode holey fibers with low bending losses. Electronics and Communications in Japan, 2006, 89, 1-7.	0.2	2
337	Nonlinear photonic crystal fibres: pushing the zero-dispersion towards the visible. New Journal of Physics, 2006, 8, 207-207.	1.2	17
338	Realization of Large Hollow-Core Photonic Band-Gap Fibers with Suppressed Higher-Order Modes. , 2006, , .		0
339	Non-Proximity Resonant Tunneling in Multi-Core Photonic Band Gap Fibers: A Revolutionary Technology for All-Fiber Integrated Assemblies. , 2006, , .		0
340	Light-Wave Guidance through Stratified Photonic Crystal Metamaterials Synthesized by Super-Inductive Layers of Metallic Nano-Strips. , 2006, , .		0
341	Multi-Core Photonic Crystal Fibers and Their Applications to Fiber Devices. The Review of Laser Engineering, 2006, 34, 31-36.	0.0	2
342	Simple evaluation of confinement losses in holey fibers. Optics Communications, 2005, 253, 95-98.	1.0	18

#	Article	IF	CITATIONS
343	Localized acoustic modes in photonic crystal fibers. Electronics and Communications in Japan, 2005, 88, 27-35.	0.2	3
344	Coupling between two collinear air-core Bragg fibers. , 2005, 5733, 206.		0
345	Numerical modeling of photonic crystal fibers. Journal of Lightwave Technology, 2005, 23, 3580-3590.	2.7	202
346	Empirical relations for simple design of photonic crystal fibers. Optics Express, 2005, 13, 267.	1.7	211
347	Design and characterization of single-mode holey fibers with low bending losses. Optics Express, 2005, 13, 4770.	1.7	117
348	A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics. Optics Express, 2005, 13, 7365.	1.7	106
349	Transverse lightwave circuits in microstructured optical fibers: waveguides. Optics Express, 2005, 13, 7506.	1.7	7
350	Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses. Optics Express, 2005, 13, 8365.	1.7	173
351	Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band. Optics Express, 2005, 13, 9516.	1.7	37
352	Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers. Optics Express, 2005, 13, 10327.	1.7	44
353	Endlessly single-mode holey fibers: the influence of core design. Optics Express, 2005, 13, 10833.	1.7	88
354	High group birefringence in air-core photonic bandgap fibers. Optics Letters, 2005, 30, 824.	1.7	49
355	Bending-insensitive single-mode hole-assisted fibers with reduced splice loss. Optics Letters, 2005, 30, 1779.	1.7	16
356	Three-color photonic crystal demultiplexer based on ultralow-refractive-index metamaterial technology. Optics Letters, 2005, 30, 2736.	1.7	14
357	A novel design for dispersion compensating photonic crystal fiber Raman amplifier. IEEE Photonics Technology Letters, 2005, 17, 2062-2064.	1.3	37
358	Theoretical investigation of photonic crystal waveguide splitters incorporating ultralow refractive index metallic nanowires. IEEE Photonics Technology Letters, 2005, 17, 2313-2315.	1.3	3
359	Modeling of two-dimensional photonic crystal resonant cavities incorporating elliptically shaped dielectric cylinders. IEEE Photonics Technology Letters, 2005, 17, 2316-2318.	1.3	4
360	Fundamental Characteristics of Localized Acoustic Modes in Photonic Crystal Fibers. IEICE Transactions on Electronics, 2005, E88-C, 876-882.	0.3	7

#	Article	lF	CITATIONS
361	Coupling between two collinear air-core Bragg fibers. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 2095.	0.9	5
362	Air-core photonic band-gap fibers: the impact of surface modes. Optics Express, 2004, 12, 394.	1.7	125
363	Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express, 2004, 12, 2027.	1.7	209
364	Polarization splitter in three-core photonic crystal fibers. Optics Express, 2004, 12, 3940.	1.7	123
365	Applicability of classical optical fiber theories to holey fibers. Optics Letters, 2004, 29, 1739.	1.7	159
366	Resonant directional coupling of hollow Bragg fibers. Optics Letters, 2004, 29, 2112.	1.7	5
367	Hollow Bragg fiber bundles: when coupling helps and when it hurts. , 2004, , .		0
368	Confinement losses in air-guiding photonic bandgap fibers. IEEE Photonics Technology Letters, 2003, 15, 236-238.	1.3	51
369	Polarization-dependent confinement losses in actual holey fibers. IEEE Photonics Technology Letters, 2003, 15, 691-693.	1.3	24
370	Single-polarization single-mode photonic crystal fibers. IEEE Photonics Technology Letters, 2003, 15, 1384-1386.	1.3	225
371	Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures. Applied Optics, 2003, 42, 6267.	2.1	57
372	Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express, 2003, 11, 843.	1.7	647
373	Structural dependence of effective area and mode field diameter for holey fibers. Optics Express, 2003, 11, 1746.	1.7	124
374	Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Optics Express, 2003, 11, 3100.	1.7	248
375	Coupling characteristics of dual-core photonic crystal fiber couplers. Optics Express, 2003, 11, 3188.	1.7	258
376	Photonic bandgap fibers with high birefringence. IEEE Photonics Technology Letters, 2002, 14, 1291-1293.	1.3	119
377	Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE Journal of Quantum Electronics, 2002, 38, 927-933.	1.0	484
378	Numerical verification of degeneracy in hexagonal photonic crystal fibers. IEEE Photonics Technology Letters, 2001, 13, 1313-1315.	1.3	66

#	Article	IF	CITATIONS
379	Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides. Journal of Lightwave Technology, 2001, 19, 405-413.	2.7	128
380	Approximate scalar finite-element beam-propagation method with perfectly matched layers for anisotropic optical waveguides. Journal of Lightwave Technology, 2001, 19, 786-792.	2.7	17
381	Beam Propagation Method for Three-Dimensional Surface Acoustic Waveguides. Japanese Journal of Applied Physics, 2000, 39, 2999-3003.	0.8	1
382	Unified software for the design of acoustooptic devices. IEEE Transactions on Magnetics, 2000, 36, 1779-1783.	1.2	1
383	Numerical analysis of integrated acoustooptic tunable filters with weighted coupling. Journal of Lightwave Technology, 1999, 17, 249-254.	2.7	15
384	Stress analysis method for elastically anisotropic material based optical waveguides and its application to strain-induced optical waveguides. Journal of Lightwave Technology, 1999, 17, 255-259.	2.7	27
385	Stress analysis method considering piezoelectric effects and its application to static strain optic devices. Journal of Lightwave Technology, 1999, 17, 1626-1633.	2.7	2
386	Stress-analysis method for optical waveguides composed of elastically anisotropic materials and its application to strain-induced optical waveguides. Electronics and Communications in Japan, 1998, 81, 16-23.	0.2	2