Malcolm L H Green

List of Publications by Citations

Source: https://exaly.com/author-pdf/221341/malcolm-l-h-green-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

83 6,083 32 77 g-index

86 6,389 8.8 5.11 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
83	A simple chemical method of opening and filling carbon nanotubes. <i>Nature</i> , 1994 , 372, 159-162	50.4	1139
82	Partial oxidation of methane to synthesis gas using carbon dioxide. <i>Nature</i> , 1991 , 352, 225-226	50.4	650
81	Selective oxidation of methane to synthesis gas using transition metal catalysts. <i>Nature</i> , 1990 , 344, 319	-37214	508
80	Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. <i>Nature</i> , 1993 , 362, 520-52	2 3 0.4	483
79	Synthesis and structure of (cis)-[1-ferrocenyl-2-(4-nitrophenyl)ethylene], an organotransition metal compound with a large second-order optical nonlinearity. <i>Nature</i> , 1987 , 330, 360-362	50.4	369
78	Carbon-Hydrogen-Transition Metal Bonds. <i>Progress in Inorganic Chemistry</i> ,1-124		362
77	The occurrence and representation of three-centre two-electron bonds in covalent inorganic compounds. <i>Chemical Communications</i> , 2012 , 48, 11481-503	5.8	214
76	Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. <i>Chemical Communications</i> , 2002 , 1319-1332	5.8	185
75	Methane Oxyforming for Synthesis Gas Production. <i>Catalysis Reviews - Science and Engineering</i> , 2007 , 49, 511-560	12.6	167
74	Immobilization of Platinated and Iodinated Oligonucleotides on Carbon Nanotubes. <i>Angewandte Chemie International Edition in English</i> , 1997 , 36, 2198-2200		102
73	Filling of Carbon Nanotubes with Silver, Gold, and Gold Chloride. <i>Chemistry of Materials</i> , 1996 , 8, 2751-2	:75 <u>4</u>	96
72	The influence of edge-plane defects and oxygen-containing surface groups on the voltammetry of acid-treated, annealed and Euper-annealed Imultiwalled carbon nanotubes. <i>Journal of Solid State Electrochemistry</i> , 2008 , 12, 1337-1348	2.6	95
71	Cationic and neutral palladium(II) methyl complexes of di-N-heterocyclic carbenes. <i>Dalton Transactions RSC</i> , 2002 , 1386		87
70	Purification and opening of carbon nanotubes via bromination. <i>Advanced Materials</i> , 1996 , 8, 1012-1015	24	87
69	Effect of carburising agent on the structure of molybdenum carbides. <i>Journal of Materials Chemistry</i> , 2001 , 11, 3094-3098		72
68	Silver(I) complex of a new imino-N-heterocyclic carbene and ligand transfer to palladium(II) and rhodium(I). <i>Dalton Transactions</i> , 2003 , 2917-2922	4.3	69
67	Nickel(II)cis- andtrans-Dimethyl Complexes of Di-N-heterocyclic Carbenes. <i>Organometallics</i> , 2001 , 20, 2611-2615	3.8	67

(2006-2000)

66	1D lanthanide halide crystals inserted into single-walled carbon nanotubes. <i>Chemical Communications</i> , 2000 , 2427-2428	5.8	66	
65	Encapsulation of RexOy Clusters within Single-Walled Carbon Nanotubes and Their in tubulo Reduction and Sintering to Re Metal. <i>Chemistry of Materials</i> , 2005 , 17, 6579-6582	9.6	57	
64	Synthesis and study of new binuclear compounds containing bridging (ECN)B(C6F5)3 and (ENC)B(C6F5)3 systems. <i>Dalton Transactions</i> , 2003 , 2550-2557	4.3	55	
63	Complete characterisation of a Sb2O3/(21,B)SWNT inclusion composite. <i>Chemical Communications</i> , 2001 , 929-930	5.8	55	
62	Study on the mechanism of partial oxidation of methane to synthesis gas over molybdenum carbide catalyst. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 4549-4554	3.6	54	
61	Fabrication of carbon-nanotube-reinforced glassBeramic nanocomposites by ultrasonic in situ solgel processing. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5344		53	
60	Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes. <i>Chemical Communications</i> , 2001 , 845-846	5.8	52	
59	Electrochemical Opening of Single-Walled Carbon Nanotubes Filled with Metal Halides and with Closed Ends. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 10389-10397	3.8	46	
58	An electrochemical comparison of manganese dioxide microparticles versus and manganese dioxide nanorods: mechanistic and electrocatalytic behaviour. <i>New Journal of Chemistry</i> , 2008 , 32, 1195	3.6	40	
57	Synthesis and catalytic properties of oxalic amidinato complexes. <i>Dalton Transactions RSC</i> , 2001 , 1761-	1767	40	
56	Edge-carboxylated graphene nanoflakes from nitric acid oxidised arc-discharge material. <i>Journal of Materials Chemistry</i> , 2010 , 20, 314-319		38	
55	Dimeric n-Alkyl Complexes of Rare-Earth Metals Supported by a Linked Amidotyclopentadienyl Ligand: Evidence for 野gostic Bonding in Bridging n-Alkyl Ligands and Its Role in Styrene Polymerization. <i>Organometallics</i> , 2003 , 22, 65-76	3.8	37	
54	Palladium(II) complexes with the bidentate iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)]. <i>Dalton Transactions RSC</i> , 2001 , 3384-3395		35	
53	Weakly-coordinating anions stabilise the unprecedented monovalent and divalent Ebenzene nickel cations [(EC5H5)Ni(EC6H6)Ni(EC5H5)]2+ and [Ni(EC6H6)2]2+. Chemical Communications, 2000 , 779-780	5.8	34	
52	Study on preparation of high surface area tungsten carbides and phase transition during the carburisation. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 3522-3529	3.6	33	
51	Synthesis, Structure, and Temperature-Dependent Dynamics of Neutral Palladium Allyl Complexes of Annulated Diaminocarbenes and Their Catalytic Application for CII and CIII Bond Formation Reactions Organometallics, 2010, 29, 4858-4870	3.8	32	
50	Greenderivatization of carbon nanotubes with Nylon 6 and L-alanine. <i>Journal of Materials Chemistry</i> , 2006 , 16, 4420-4426		30	
49	Crystal-encapsulation-induced band-structure change in single-walled carbon nanotubes: Photoluminescence and Raman spectra. <i>Physical Review B</i> , 2006 , 74,	3.3	28	

48	The classification and representation of main group element compounds that feature three-center four-electron interactions. <i>Dalton Transactions</i> , 2016 , 45, 18784-18795	4.3	27
47	Highly hydrophilic and stable polypeptide/single-wall carbon nanotube conjugates. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1977		27
46	Electrophilic addition reactions of the Lewis acids B(C6F5)2R [R = C6F5, Ph, H or Cl] with the metallocene hydrides [M($EC5H5$)2H2] (M = Mo or W), [Re($EC5H5$)2H] and [Ta($EC5H5$)2H3]. <i>Dalton Transactions RSC</i> , 2000 , 813-820		25
45	Group 5 ansa-Metallocenes: Structural and Dynamic Properties of Tetrahydroborate Complexes. <i>Organometallics</i> , 2000 , 19, 630-637	3.8	23
44	Niobium- and tantalum-benzamidinato complexes with trimethylphosphine, imido, or Eyclopentadienyl derivatives. <i>Dalton Transactions RSC</i> , 2000 , 967-974		22
43	NiobiumEtyclopentadienyl compounds with imido and amido ligands derived from 2,6-dimethylaniline. <i>Dalton Transactions RSC</i> , 2000 , 4555-4562		22
42	Niobium Exyclopentadienyl compounds with imido and amido ligands derived from tert-butylamine. <i>Dalton Transactions RSC</i> , 2000 , 4044-4051		21
41	Sidewall functionalisation of carbon nanotubes by addition of diarylcarbene derivatives. <i>Journal of Materials Chemistry</i> , 2011 , 21, 19080		20
40	Synthesis of [Ti(B-1,3,5-C6H3iPr3)2][BAr4] (Ar = C6H5, p-C6H4F, 3,5-C6H3(CF3)2), the First Titanium(I) Derivatives. <i>Organometallics</i> , 1997 , 16, 3100-3101	3.8	20
39	Synthesis and reactions of (tert-butylimido)bis(Eyclopentadienyl)niobium cations: NMR evidence for d0 olefin cations [Nb{(EC5H5)2}(NtBu)(EC2H4)][B(C6F5)4] and [Nb{(EC5H4)CMe2(EC5H4)}(NtBu)(EC2H3Me)][B(C6F5)4]. <i>Dalton Transactions RSC</i> , 2000 , 2952-2959		20
38	Rapid Synthesis of Alkali-Metal Fullerides Using a Microwave-Induced Argon Plasma. <i>Chemistry of Materials</i> , 1996 , 8, 394-400	9.6	20
37	Notizen: Some Molybdenum and Tungsten Complexes with Nitrogen Ligands. <i>Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences</i> , 1968 , 23, 106-106	1	17
36	Opening and Filling Carbon Nanotubes. Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5, 695-	704	16
35	Interactions between tripodal porphyrin hosts and single walled carbon nanotubes: an experimental and theoretical (DFT) account. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2781		16
34	Rationalizing the catalytic performance of Elumina-supported Co(Ni)Mo(W) HDS catalysts prepared by urea-matrix combustion synthesis. <i>Catalysis Letters</i> , 2006 , 111, 57-66	2.8	15
33	Notizen: A o-Vinyl Complex of Iron. <i>Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences</i> , 1965 , 20, 598-598	1	15
32	Notizen: Some New Cyclopentadienyl Halides of Molybdenum, Tungsten and Rhenium. <i>Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences</i> , 1964 , 19, 652-652	1	14
31	Vapour synthesis: A new technique in synthetic chemistry. <i>Journal of Applied Chemistry and Biotechnology</i> , 2007 , 25, 641-651		13

(2006-2005)

30	New group 10 complexes of the bulky iminophosphine ligands [Ph2PCH2C(Ph)N(2,6-R2C6H3)], where R = Me, iPr. New Journal of Chemistry, 2005 , 29, 385-397	3.6	13
29	One- and Two-Dimensional Inorganic Crystals inside Inorganic Nanotubes. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 4233-4243	2.3	12
28	Immobilisierung von platinierten und iodierten DNA-Oligomeren an Kohlenstoff-Nanorfiren. <i>Angewandte Chemie</i> , 1997 , 109, 2291-2294	3.6	12
27	Correlated transport and high resolution transmission electron microscopy investigations on inorganic-filled single-walled carbon nanotubes showing negative differential resistance. <i>Applied Physics Letters</i> , 2007 , 91, 253124	3.4	12
26	The Covalent Bond Classification Method and Its Application to Compounds That Feature 3-Center 2-Electron Bonds. <i>Structure and Bonding</i> , 2016 , 79-139	0.9	11
25	Ferromagnetism of double-walled carbon nanotubes. <i>Applied Physics Letters</i> , 2010 , 96, 242503	3.4	11
24	Synthesis and characterization of WS2 inorganic nanotubes with encapsulated/intercalated CsI. <i>Nano Research</i> , 2010 , 3, 170-173	10	11
23	Monocyclopentadienyl complexes of niobium, tantalum and tungsten containing heterodifunctional P,O ligands. <i>New Journal of Chemistry</i> , 2003 , 27, 32-38	3.6	11
22	Studies on ansa-zirconoceneButadiene derivatives. Dalton Transactions RSC, 2000, 317-327		11
21	Redshift and optical anisotropy of collective Evolume modes in multiwalled carbon nanotubes. <i>Physical Review B</i> , 2006 , 74,	3.3	10
21		3.3	1 0
	Physical Review B, 2006, 74, Carbon nanocapsules: blocking materials inside carbon nanotubes. Physica Status Solidi C: Current	3.3	
20	Physical Review B, 2006, 74, Carbon nanocapsules: blocking materials inside carbon nanotubes. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2739-2742 Synthesis of molybdenum arene complexes containing amide-derived heterodifunctional P,O	3.3	9
20	Physical Review B, 2006, 74, Carbon nanocapsules: blocking materials inside carbon nanotubes. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2739-2742 Synthesis of molybdenum arene complexes containing amide-derived heterodifunctional P,O ligands. Dalton Transactions RSC, 2002, 1487-1493 Synthesis of B-arene complexes of molybdenum containing **ketophosphine* and related P,O	3.3	9
20 19 18	Carbon nanocapsules: blocking materials inside carbon nanotubes. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2010 , 7, 2739-2742 Synthesis of molybdenum arene complexes containing amide-derived heterodifunctional P,O ligands. <i>Dalton Transactions RSC</i> , 2002 , 1487-1493 Synthesis of B-arene complexes of molybdenum containing **ketophosphine* and related P,O mixed donor ligands. <i>Dalton Transactions RSC</i> , 2002 , 2491-2500 Group 6 transition metal carbonyl complexes with chalcogen-bridged diarsenic(III) ligands. <i>Dalton</i>	2.8	9 9
20 19 18	Carbon nanocapsules: blocking materials inside carbon nanotubes. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2010 , 7, 2739-2742 Synthesis of molybdenum arene complexes containing amide-derived heterodifunctional P,O ligands. <i>Dalton Transactions RSC</i> , 2002 , 1487-1493 Synthesis of B-arene complexes of molybdenum containing *ketophosphine and related P,O mixed donor ligands. <i>Dalton Transactions RSC</i> , 2002 , 2491-2500 Group 6 transition metal carbonyl complexes with chalcogen-bridged diarsenic(III) ligands. <i>Dalton Transactions RSC</i> , 2000 , 3347-3355	2.8	9 9 9
20 19 18 17 16	Carbon nanocapsules: blocking materials inside carbon nanotubes. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2739-2742 Synthesis of molybdenum arene complexes containing amide-derived heterodifunctional P,O ligands. Dalton Transactions RSC, 2002, 1487-1493 Synthesis of B-arene complexes of molybdenum containing **Retophosphine* and related P,O mixed donor ligands. Dalton Transactions RSC, 2002, 2491-2500 Group 6 transition metal carbonyl complexes with chalcogen-bridged diarsenic(III) ligands. Dalton Transactions RSC, 2000, 3347-3355 High yield synthesis of propanal from methane and air. Catalysis Letters, 1992, 13, 341-347 Synthesis and Interconversion of Some Small Ruthenaboranes: Reaction of a Ruthenium	2.8	9 9 9 8 8

12	The characterization of sub-nanometer scale structures within single walled carbon nanotubes. <i>AIP Conference Proceedings</i> , 2001 ,	0	4
11	Synthesis of 1D P-block halide crystals within single walled carbon nanotubes. <i>AIP Conference Proceedings</i> , 2001 ,	O	3
10	Comment on "Hydride, gold(i) and related derivatives of the unsaturated ditungsten anion [WCp(PCy)(ECO)]-" by M. A. Ruiz et al., Dalton Trans., 2014, 43, 16044. <i>Dalton Transactions</i> , 2018 , 47, 6628-6629	4.3	2
9	SOME EARLY-DAYS MEMORIES AND THEN A SMALL DIVERSION INTO BORON CHEMISTRY, AND FINALLY SOME NEW CHEMISTRY OF CARBON NANOTUBES. <i>Comments on Inorganic Chemistry</i> , 2010 , 31, 90-94	3.9	2
8	Spatially resolved EELS applied to the study of a one-dimensional solid solution of AgCl1IIIX formed within single wall carbon nanotubes. <i>AIP Conference Proceedings</i> , 2002 ,	О	2
7	The Crystallography of Metal Halides formed within Single Walled Carbon Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 633, 14311		2
6	Hydrido Phosphine Arene Complexes of Molybdenum. <i>Inorganic Syntheses</i> ,54-61		2
5	Complete characterization of an (Sb2O3)n/SWNT inclusion composite. <i>Physics of the Solid State</i> , 2002 , 44, 463-466	0.8	1
4	1D P-Block Halide Crystals Confined into Single Walled Carbon Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 633, 13151		1
3	Exploring Pathways for Activation of Carbon Monoxide by Palladium Iminophosphines. <i>ChemPlusChem</i> , 2013 , 78, 1413-1420	2.8	
2	Characterisation of a LaI2@(18,3)SWNT encapsulation composite: A 1D LaI2 crystal fragment, adopting the EeducedEstructure of LaI3. <i>Microscopy and Microanalysis</i> , 2003 , 9, 324-325	0.5	
1	Structural and Morphological Variations of Encapsulated Metal Oxides in Single Walled Carbon Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 901, 1		