Feifei Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2213245/publications.pdf

Version: 2024-02-01

1163117 1281871 11 232 8 11 citations h-index g-index papers 11 11 11 526 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	SnS ₂ Monolayer-Supported Transition Metal Atoms as Efficient Bifunctional Oxygen Electrocatalysts: A Theoretical Investigation. Energy & Electrocatalysts: A Theoretical Investigation. Electrocatalysts: A	5.1	9
2	Enhancing the catalytic activity of CdX and ZnX (X = S, Se and Te) nanostructures for the hydrogen evolution reaction $\langle i \rangle via \langle i \rangle$ transition metal doping. Materials Advances, 2022, 3, 5772-5777.	5.4	2
3	Modulating the Electronic, Optical, and Transport Properties of CdTe and ZnTe Nanostructures with Organic Molecules: A Theoretical Investigation. ACS Omega, 2020, 5, 21922-21928.	3.5	2
4	Tuning Electrical and Raman Scattering Properties of Cadmium Sulfide Nanoribbons via Surface Charge Transfer Doping. Journal of Physical Chemistry C, 2019, 123, 15794-15801.	3.1	7
5	CdS Nanoribbonâ€Based Resistive Switches with Ultrawidely Tunable Power by Surface Charge Transfer Doping. Advanced Functional Materials, 2018, 28, 1706577.	14.9	16
6	The improvement of photocatalytic activity of monolayer g-C3N4via surface charge transfer doping. RSC Advances, 2018, 8, 1899-1904.	3.6	19
7	Enhanced visible light absorption performance of SnS ₂ and SnSe ₂ <i>via</i> surface charge transfer doping. RSC Advances, 2018, 8, 40464-40470.	3.6	10
8	Tuning the Electronic and Optical Properties of Monolayers As, Sb, and Bi via Surface Charge Transfer Doping. Journal of Physical Chemistry C, 2017, 121, 19530-19537.	3.1	35
9	Surface Charge Transfer Doping <i>via</i> Transition Metal Oxides for Efficient p-Type Doping of II–VI Nanostructures. ACS Nano, 2016, 10, 10283-10293.	14.6	31
10	MoO ₃ Nanodots Decorated CdS Nanoribbons for High-Performance, Homojunction Photovoltaic Devices on Flexible Substrates. Nano Letters, 2015, 15, 3590-3596.	9.1	38
11	Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption. Journal of Physical Chemistry Letters, 2015, 6, 4701-4710.	4.6	63