Hao Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2212707/publications.pdf

Version: 2024-02-01

471509 713466 2,247 22 17 21 citations h-index g-index papers 22 22 22 1393 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science, 2019, 365, 578-582.	12.6	662
2	Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nature Communications, 2018 , 9 , 1813 .	12.8	408
3	Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science, 2021, 374, 100-104.	12.6	276
4	BiFeO ₃ â€"SrTiO ₃ thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. Journal of Materials Chemistry A, 2017, 5, 5920-5926.	10.3	218
5	High-entropy enhanced capacitive energy storage. Nature Materials, 2022, 21, 1074-1080.	27.5	161
6	Dielectric films for high performance capacitive energy storage: multiscale engineering. Nanoscale, 2020, 12, 19582-19591.	5 . 6	69
7	A surface-modified TiO ₂ nanorod array/P(VDF–HFP) dielectric capacitor with ultra high energy density and efficiency. Journal of Materials Chemistry C, 2017, 5, 12777-12784.	5.5	65
8	Thickness-dependent dielectric and energy storage properties of (Pb0.96La0.04)(Zr0.98Ti0.02)O3 antiferroelectric thin films. Journal of Applied Physics, 2016, 119, .	2. 5	52
9	Advances in Dielectric Thin Films for Energy Storage Applications, Revealing the Promise of Group IV Binary Oxides. ACS Energy Letters, 2021, 6, 2208-2217.	17.4	50
10	Controllable electrical, magnetoelectric and optical properties of BiFeO3 via domain engineering. Progress in Materials Science, 2022, 127, 100943.	32.8	40
11	Enhancements of dielectric and energy storage performances in leadâ€free films with sandwich architecture. Journal of the American Ceramic Society, 2019, 102, 936-943.	3.8	37
12	Ferroelectric polymers and their nanocomposites for dielectric energy storage applications. APL Materials, $2021, 9, .$	5.1	37
13	High-stability transparent flexible energy storage based on PbZrO3/muscovite heterostructure. Nano Energy, 2021, 87, 106149.	16.0	35
14	High energy storage capability of perovskite relaxor ferroelectrics via hierarchical optimization. Rare Metals, 2022, 41, 730-744.	7.1	33
15	Antiferroelectric Anisotropy of Epitaxial PbHfO ₃ Films for Flexible Energy Storage. Advanced Functional Materials, 2021, 31, 2105060.	14.9	29
16	Enhanced electric resistivity and dielectric energy storage by vacancy defect complex. Energy Storage Materials, 2021, 42, 836-844.	18.0	24
17	Phaseâ€Field Simulations of Tunable Polar Topologies in Leadâ€Free Ferroelectric/Paraelectric Multilayers with Ultrahigh Energyâ€Storage Performance. Advanced Materials, 2022, 34, e2108772.	21.0	24
18	Strain Engineering of Energy Storage Performance in Relaxor Ferroelectric Thin Film Capacitors. Advanced Theory and Simulations, 2022, 5, .	2.8	13

#	Article	IF	CITATION
19	Perspectives on domain engineering for dielectric energy storage thin films. Applied Physics Letters, 2022, 120, .	3.3	8
20	Effects of annealing process and the additive on the electrical properties of chemical solution deposition derived 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 thin films. Journal of Materials Science: Materials in Electronics, 2018, 29, 16997-17002.	2.2	3
21	Fabrication and applications of flexible inorganic ferroelectric thin films. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 217708.	0.5	3
22	Investigation of Negative Capacitance Effect from Domain Switching Dynamics., 2019,,.		O