List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2212537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Budget MOF-derived catalyst to realize full conversion from furfural to furfuryl alcohol. Molecular Catalysis, 2022, 518, 112092.	1.0	8
2	In Situ Construction of a Co/ZnO@C Heterojunction Catalyst for Efficient Hydrogenation of Biomass Derivative under Mild Conditions. ACS Applied Materials & Interfaces, 2022, 14, 17195-17207.	4.0	14
3	Cuâ^'NPs@C Nanosheets Derived from a PVPâ€assisted 2D Cuâ€MOF with Renewable Ligand for Highâ€Efficient Selective Hydrogenation of 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	3.6	4
4	Integrating tri-mural nanotraps into a microporous metal-organic framework for C2H2/CO2 and C2H2/C2H4 separation. Separation and Purification Technology, 2022, 296, 121404.	3.9	23
5	Reverse-selective metal–organic framework materials for the efficient separation and purification of light hydrocarbons. Coordination Chemistry Reviews, 2022, 468, 214628.	9.5	48
6	Iron promoted MOF-derived carbon encapsulated NiFe alloy nanoparticles core-shell catalyst for CO2 methanation. Journal of CO2 Utilization, 2022, 62, 102093.	3.3	17
7	Two-Dimensional Metal–Organic Framework with Ultrahigh Water Stability for Separation of Acetylene from Carbon Dioxide and Ethylene. ACS Applied Materials & Interfaces, 2022, 14, 33429-33437.	4.0	29
8	Incorporation of Active Metal Species in Crystalline Porous Materials for Highly Efficient Synergetic Catalysis. Small, 2021, 17, e2003971.	5.2	31
9	Encapsulation of Ultrafine Metal–Organic Framework Nanoparticles within Multichamber Carbon Spheres by a Two-Step Double-Solvent Strategy for High-Performance Catalysts. ACS Applied Materials & Interfaces, 2021, 13, 12169-12180.	4.0	8
10	Zeolite-Encapsulated Ultrasmall Cu/ZnO <i>_x</i> Nanoparticles for the Hydrogenation of CO ₂ to Methanol. ACS Applied Materials & Interfaces, 2021, 13, 18693-18703.	4.0	46
11	Engineering Co/MnO heterointerface inside porous graphitic carbon for boosting the low-temperature CO2methanation. Applied Catalysis B: Environmental, 2021, 287, 119959.	10.8	36
12	Propane-Trapping Ultramicroporous Metal–Organic Framework in the Low-Pressure Area toward the Purification of Propylene. ACS Applied Materials & Interfaces, 2021, 13, 35990-35996.	4.0	39
13	MOF derived non-noble metal catalysts to control the distribution of furfural selective hydrogenation products. Molecular Catalysis, 2021, 513, 111824.	1.0	13
14	Atomic layer deposition of nano-scale molybdenum sulfide within a metal–organic framework for highly efficient hydrodesulfurization. Materials Advances, 2021, 2, 1294-1301.	2.6	11
15	Efficient Purification of Ethylene from C ₂ Hydrocarbons with an C ₂ H ₆ /C ₂ Hsub>0/C ₂ -Selective Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 962-969.	4.0	69
16	Pore-Space Partition through an Embedding Metal-Carboxylate Chain-Induced Topology Upgrade Strategy for the Separation of Acetylene/Ethylene. Inorganic Chemistry, 2021, 60, 19328-19335.	1.9	11
17	Metal–Organic Framework Materials for the Separation and Purification of Light Hydrocarbons. Advanced Materials, 2020, 32, e1806445.	11.1	408
18	Aerobic Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid over Holey 2 D Mn ₂ O ₃ Nanoflakes from a Mnâ€based MOF. ChemSusChem, 2020, 13, 548-555.	3.6	68

#	Article	IF	CITATIONS
19	Microporous Metal–Organic Framework with a Completely Reversed Adsorption Relationship for C ₂ Hydrocarbons at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 6105-6111.	4.0	63
20	In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas. Applied Catalysis B: Environmental, 2020, 278, 119262.	10.8	70
21	A novel Cu-nanowire@Quasi-MOF <i>via</i> mild pyrolysis of a bimetal-MOF for the selective oxidation of benzyl alcohol in air. Materials Chemistry Frontiers, 2019, 3, 2363-2373.	3.2	42
22	A Cd ^{II} â€Based Metalâ€Organic Framework with <i>pcu</i> Topology as Turnâ€On Fluorescent Sensor for Al ³⁺ . Chemistry - an Asian Journal, 2019, 14, 3648-3654.	1.7	58
23	Enhanced Gas Uptake in a Microporous Metal–Organic Framework <i>via</i> a Sorbate Induced-Fit Mechanism. Journal of the American Chemical Society, 2019, 141, 17703-17712.	6.6	152
24	Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordination Chemistry Reviews, 2019, 387, 79-120.	9.5	298
25	Efficient separation of C ₂ H ₂ from C ₂ H ₂ /CO ₂ mixtures in an acid–base resistant metal–organic framework. Chemical Communications, 2018, 54, 4846-4849.	2.2	62
26	Metal–Organic Framework Derived Core–Shell Co/Co ₃ O ₄ @N-C Nanocomposites as High Performance Anode Materials for Lithium Ion Batteries. Inorganic Chemistry, 2018, 57, 4620-4628.	1.9	86
27	A cationic metal-organic framework based on {Zn4} cluster for rapid and selective adsorption of dyes. Chinese Chemical Letters, 2018, 29, 857-860.	4.8	38
28	A Waterâ€Stable Luminescent Zn ^{II} Metalâ€Organic Framework as Chemosensor for Highâ€Efficiency Detection of Cr ^{VI} â€Anions (Cr ₂ O ₇ ^{2â^'}) Tj E 3192-3198	TQ <u>q</u> 0 0 0	rgBT /Overlc
29	Crystal structures, selective fluorescent sensing and photocatalytic properties of cobalt(II) and copper(II) coordination architectures with 2,4,5-tri(4-pyridyl)-imidazole. Journal of Coordination Chemistry, 2018, 71, 4007-4021.	0.8	0
30	APPT-Cd MOF: Acetylene Adsorption Mechanism and Its Highly Efficient Acetylene/Ethylene Separation at Room Temperature. Chemistry of Materials, 2018, 30, 7433-7437.	3.2	30
31	Rational Construction of Highly Tunable Donor–Acceptor Materials Based on a Crystalline Host–Guest Platform. Advanced Materials, 2018, 30, e1804715.	11.1	132
32	Effective Co _{<i>x</i>} S _{<i>y</i>} Hydrogen Evolution Reaction Electrocatalysts Fabricated by Inâ€Situ Sulfuration of a Metal–Organic Framework. ChemElectroChem, 2018, 5, 3570-3570.	1.7	3
33	Effective Co _x S _y HER Electrocatalysts Fabricated by Inâ€Situ Sulfuration of a Metalâ€Organic Framework. ChemElectroChem, 2018, 5, 3639-3644.	1.7	41
34	Utilizing an effective framework to dye energy transfer in a carbazole-based metal–organic framework for high performance white light emission tuning. Inorganic Chemistry Frontiers, 2018, 5, 2868-2874.	3.0	38
35	Selective fluorescent sensing and photocatalytic properties of Zinc(II) and Cadmium(II) coordination architectures with naphthalene-1,5-disulfonate and 2,4,5-tri(4-pyridyl)-imidazole. Inorganica Chimica Acta, 2018, 482, 447-453.	1.2	11
36	Metal–Organic Framework with Trifluoromethyl Groups for Selective C ₂ H ₂ and CO ₂ Adsorption. Crystal Growth and Design, 2018, 18, 4522-4527.	1.4	26

#	Article	IF	CITATIONS
37	A Flexible Porous MOF Exhibiting Reversible Breathing Behavior through Singleâ€Crystal to Singleâ€Crystal Transformation. ChemistrySelect, 2017, 2, 283-287.	0.7	8
38	Two microporous Fe-based MOFs with multiple active sites for selective gas adsorption. Chemical Communications, 2017, 53, 2394-2397.	2.2	72
39	Hollow porous organic polymer: High-performance adsorption for organic dye in aqueous solution. Journal of Polymer Science Part A, 2017, 55, 1329-1337.	2.5	28
40	Highly Enhanced Gas Uptake and Selectivity via Incorporating Methoxy Groups into a Microporous Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 2172-2177.	1.4	26
41	Two new metal–organic frameworks based on tetrazole–heterocyclic ligands accompanied by in situ ligand formation. Dalton Transactions, 2017, 46, 3223-3228.	1.6	23
42	A metal–organic framework as a "turn on―fluorescent sensor for aluminum ions. Inorganic Chemistry Frontiers, 2017, 4, 256-260.	3.0	127
43	Two solvent-induced porous hydrogen-bonded organic frameworks: solvent effects on structures and functionalities. Chemical Communications, 2017, 53, 11150-11153.	2.2	93
44	Construction of a Multi-Cage-Based MOF with a Unique Network for Efficient CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 26177-26183.	4.0	75
45	Two Sixâ€Connected MOFs with Distinct Architecture: Synthesis, Structure, Adsorption, and Magnetic Properties. ChemPlusChem, 2016, 81, 775-779.	1.3	6
46	A new luminescent metal-organic framework for selective sensing of nitroaromatic explosives. Science China Chemistry, 2016, 59, 959-964.	4.2	48
47	UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation. Journal of the American Chemical Society, 2016, 138, 5678-5684.	6.6	489
48	Governing metal–organic frameworks towards high stability. Chemical Communications, 2016, 52, 8501-8513.	2.2	196
49	Microporous Diaminotriazine-Decorated Porphyrin-Based Hydrogen-Bonded Organic Framework: Permanent Porosity and Proton Conduction. Crystal Growth and Design, 2016, 16, 5831-5835.	1.4	120
50	High Proton Conduction in Two Co ^{II} and Mn ^{II} Anionic Metal–Organic Frameworks Derived from 1,3,5-Benzenetricarboxylic Acid. Crystal Growth and Design, 2016, 16, 6776-6780.	1.4	73
51	A Twofold Interpenetrated Metal–Organic Framework with High Performance in Selective Separation of C ₂ H ₂ /CH ₄ . ChemPlusChem, 2016, 81, 770-774.	1.3	31
52	A Threeâ€Dimensional TetraphenylÃetheneâ€Based Metal–Organic Framework for Selective Gas Separation and Luminescence Sensing of Metal Ions. European Journal of Inorganic Chemistry, 2016, 2016, 4470-4475.	1.0	20
53	Control of interpenetration in a microporous metal–organic framework for significantly enhanced C ₂ H ₂ /CO ₂ separation at room temperature. Chemical Communications, 2016, 52, 3494-3496.	2.2	94
54	A luminescent metal–organic framework for selective sensing of Fe3+ with excellent recyclability. Inorganic Chemistry Communication, 2016, 65, 9-12.	1.8	39

#	Article	IF	CITATIONS
55	Flexible Metal–Organic Frameworks: Recent Advances and Potential Applications. Advanced Materials, 2015, 27, 5432-5441.	11.1	470
56	Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nature Communications, 2015, 6, 7328.	5.8	404
57	A Flexible Microporous Hydrogen-Bonded Organic Framework for Gas Sorption and Separation. Journal of the American Chemical Society, 2015, 137, 9963-9970.	6.6	360
58	Two microporous MOFs constructed from different metal cluster SBUs for selective gas adsorption. Chemical Communications, 2015, 51, 14211-14214.	2.2	51
59	Synthesis and Magnetic Properties of a Series of Octanuclear [Fe ₆ Ln ₂] Nanoclusters. Crystal Growth and Design, 2015, 15, 2253-2259.	1.4	60
60	Two robust metal–organic frameworks with uncoordinated N atoms for CO ₂ adsorption. CrystEngComm, 2015, 17, 8198-8201.	1.3	12
61	Two Series of Lanthanide Metal-Organic Frameworks Constructed from Crown-Ether-Like Secondary Building Units. European Journal of Inorganic Chemistry, 2014, 2014, 1185-1191.	1.0	18
62	A Spin-Canted Polynuclear Manganese Complex Comprised of Alternating Linkage of Cyclic Tetra-and Mononuclear Fragments. Crystal Growth and Design, 2014, 14, 2-5.	1.4	30
63	Solvent-induced structural diversities from discrete cup-shaped Co ₈ clusters to Co ₈ cluster-based chains accompanied by in situ ligand conversion. CrystEngComm, 2014, 16, 753-756.	1.3	33
64	Tuning the magnetic behaviors in [FellI12LnIII4] clusters with aromatic carboxylate ligands. Inorganic Chemistry Frontiers, 2014, 1, 200-206.	3.0	35
65	Two Mg(II) coordination polymers based on the flexible carboxylic ligands: Synthesis, crystal structures, luminescent and adsorption properties. Inorganic Chemistry Communication, 2014, 49, 131-135.	1.8	7
66	A new Co-based metal–organic framework constructed from infinite sinusoidal-like rod-shaped secondary building units. Inorganic Chemistry Communication, 2014, 47, 67-70.	1.8	4
67	Zn(II)-Benzotriazolate Clusters Based Amide Functionalized Porous Coordination Polymers with High CO ₂ Adsorption Selectivity. Inorganic Chemistry, 2014, 53, 8842-8844.	1.9	62
68	Doping cobalt into a [Zn ₇] cluster-based MOF to tune magnetic behaviour and induce fluorescence signal mutation. Dalton Transactions, 2014, 43, 11470-11473.	1.6	27
69	Targeted Structure Modulation of "Pillar-Layered―Metal–Organic Frameworks for CO2 Capture. Inorganic Chemistry, 2014, 53, 8985-8990.	1.9	82
70	Structural modulation in two Cu ^{II} -based MOFs by synergistic assembly involving the mixed-ligand synthetic strategy and the solvent effect. Dalton Transactions, 2014, 43, 15708-15712.	1.6	30
71	Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: mechanism and morphology dependent magnetism. Scientific Reports, 2014, 4, 6023.	1.6	32
72	Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities. Scientific Reports, 2013, 3, 3312.	1.6	136

#	Article	lF	CITATIONS
73	[Co(NH3)6]2[Cd8(C2O4)11(H2O)4]·8H2O: A 5-connected sqp topological metal–organic framework co-templated by Co(NH3)63+ cation and (H2O)4 cluster. Chinese Chemical Letters, 2013, 24, 861-865.	4.8	4
74	Five new Mn(II)/Co(II) coordination polymers constructed from flexible multicarboxylate ligands with varying magnetic properties. Journal of Solid State Chemistry, 2013, 204, 197-204.	1.4	10
75	3D Gd ^{III} Complex Containing Gd ₁₆ Macrocycles Exhibiting Large Magnetocaloric Effect. Crystal Growth and Design, 2013, 13, 4631-4634.	1.4	68
76	A Controllable Gate Effect in Cobalt(II) Organic Frameworks by Reversible Structure Transformations. Angewandte Chemie - International Edition, 2013, 52, 11550-11553.	7.2	302
77	A new ditopic ratiometric receptor for detecting zinc and fluoride ions in living cells. Analyst, The, 2013, 138, 5486.	1.7	51
78	A 1D polyoxometalate chain built from {Mo16Ni16P24} wheels: Synthesis, structure and magnetism. Inorganic Chemistry Communication, 2013, 28, 70-74.	1.8	5
79	C2-symmetrical hexaazatriphenylene derivatives as colorimetric and ratiometric fluorescence chemsensors for Zn2+. Talanta, 2013, 108, 150-156.	2.9	13
80	In vitro controlled release of theophylline from metal–drug complexes. Journal of Materials Chemistry B, 2013, 1, 3879.	2.9	32
81	Syntheses, structures and magnetic properties of three Co(II) coordination architectures based on a flexible multidentate carboxylate ligand and different N-donor ligands. Science China Chemistry, 2013, 56, 1693-1700.	4.2	9
82	A Series of 2D Coordination Polymers Based on Unprecedented Linear Tetranuclear Units Bridged by the Azido Anion: Syntheses, Crystal Structures and Magnetic Properties. Acta Chimica Sinica, 2013, 71, 755.	0.5	1
83	Two new Coll coordination polymers based on carboxylate-bridged di- and trinuclear clusters with a pyridinedicarboxylate ligand: synthesis, structures and magnetism. Dalton Transactions, 2012, 41, 6813.	1.6	78
84	Fe ₂₀ Cluster Units Based Coordination Polymer from in Situ Ligand Conversion and Trapping of an Intermediate. Inorganic Chemistry, 2012, 51, 9571-9573.	1.9	26
85	New chiral coordination polymers constructed from well elaborated achiral and chiral ligands. RSC Advances, 2012, 2, 4348.	1.7	13
86	Synthesis, structure, and photoluminescence of ZnII and CdII coordination complexes constructed by structurally related 5,6-substituted pyrazine-2,3-dicarboxylate ligands. Solid State Sciences, 2012, 14, 1117-1125.	1.5	15
87	Construction and adsorption properties of microporous tetrazine-based organic frameworks. RSC Advances, 2012, 2, 408-410.	1.7	46
88	A Two-Fold Interpenetrated Coordination Framework with a Rare (3,6)-Connected loh1 Topology: Magnetic Properties and Photocatalytic Behavior. Crystal Growth and Design, 2012, 12, 5426-5431.	1.4	125
89	Pore size-controlled gases and alcohols separation within ultramicroporous homochiral lanthanide–organic frameworks. Journal of Materials Chemistry, 2012, 22, 7813.	6.7	53
90	Temperature-Dependent Structures of Lanthanide Metal–Organic Frameworks Based on Furan-2,5-Dicarboxylate and Oxalate. Crystal Growth and Design, 2012, 12, 3263-3270.	1.4	76

#	Article	IF	CITATIONS
91	Cadmium(II) and lanthanum(III) coordination architectures with anthracene-9,10-dicarboxylate: Crystal structures and photoluminescent properties. Inorganica Chimica Acta, 2012, 385, 58-64.	1.2	7
92	Anions behaviors for the dimensionalities of coordination polymers based on poly(imidazole) ligands. Journal of Molecular Structure, 2012, 1011, 134-139.	1.8	9
93	Metal coordination architectures of triazole-based ligands: Effect of the backbone of bridging ligands on the construction of polymers. Solid State Sciences, 2012, 14, 419-425.	1.5	5
94	Isomorphous tetrazolate MnII and CoII compounds built on Δ-chain showing different magnetic behaviors. Dalton Transactions, 2011, 40, 11955.	1.6	22
95	Rational Construction of 3D Pillared Metal–Organic Frameworks: Synthesis, Structures, and Hydrogen Adsorption Properties. Inorganic Chemistry, 2011, 50, 7555-7562.	1.9	112
96	Coordination polymers of macrocyclic oxamide with 1,3,5-benzenetricarboxylate: syntheses, crystal structures and magnetic properties. Dalton Transactions, 2011, 40, 5528.	1.6	21
97	Cadmium(ii) and zinc(ii) metal–organic frameworks with anthracene-based dicarboxylic ligands: solvothermal synthesis, crystal structures, and luminescent properties. CrystEngComm, 2011, 13, 5152.	1.3	71
98	Microporous Metal–Organic Framework Based on Supermolecular Building Blocks (SBBs): Structure Analysis and Selective Gas Adsorption Properties. Crystal Growth and Design, 2011, 11, 2050-2053.	1.4	66
99	Zinc(II) Complexes with a Versatile Multitopic Tetrazolate-Based Ligand Showing Various Structures: Impact of Reaction Conditions on the Final Product Structures. Inorganic Chemistry, 2011, 50, 10994-11003.	1.9	46
100	A Highly Selective On/Off Fluorescence Sensor for Cadmium(II). Inorganic Chemistry, 2011, 50, 10041-10046.	1.9	140
101	Metal coordination polymers of 2,3-bis(benzimidazol-1-ylmethyl)quinoxaline: Syntheses, crystal structures and luminescent properties. Solid State Sciences, 2011, 13, 1256-1260.	1.5	6
102	Syntheses and Structural Analytical Studies of Two Co(II) Complexes Based on 1,4-Di(benzimidazole-1-yl)benzene. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 682-687.	1.9	4
103	Three interpenetrated copper(II) coordination polymers based on a V-shaped ligand: Synthesis, structures, sorption and magnetic properties. Science China Chemistry, 2011, 54, 1446-1453.	4.2	13
104	Synthesis, structure and properties of microporous metal–organic frameworks constructed from Ni(II)/Cd(II), Tpt and H4bpta. Inorganic Chemistry Communication, 2011, 14, 1082-1085.	1.8	18
105	Bis[î¼-1,1′-methylenebis(1 <i>H</i> -imidazole)-îº ² <i>N</i> ³ : <i>N</i> ^{3′Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m491-m491.}	sup>]bis[dichloridocob
106	Tetrakis(2,2′-bipyridine)di-μ _{3 < /sub>-hydroxido-bis(μ-2-oxidobenzoato)tetracopper(II) dinitrate tetrahydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m520-m520.}	0.2	1
107	Poly[[(μ3-2,4,6-tri-4-pyridyl-1,3,5-triazine)copper(I)] nitrate monohydrate]. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m515-m515.	0.2	1
108	catena-Poly[[diaquabis(formato-κO)nickel(II)]-μ-2,4,6-tris(4-pyridyl)-1,3,5-triazine-κ2N2:N4]. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m563-m563.	0.2	0

#	Article	IF	CITATIONS
109	Novel coordination polymers with 1,4-di(benzimidazole-1-yl)benzene modulated by an anion: Syntheses, structures and properties. Science China Chemistry, 2010, 53, 2170-2176.	4.2	4
110	Cadmium coordination polymers based on biimidazole and bibenzimidazole: Syntheses, crystal structures and fluorescent properties. Solid State Sciences, 2010, 12, 1357-1363.	1.5	7
111	Silver(I) complexes with (1-pyrazolyl)pyridazine ligands: Synthesis, crystal structures and luminescent properties. Solid State Sciences, 2010, 12, 1484-1489.	1.5	12
112	Copper(II) complexes with monocarboxylate ligands bearing different substituent groups: Synthesis and spectroscopic studies. Inorganica Chimica Acta, 2010, 363, 1377-1385.	1.2	28
113	Metal–organic coordination architectures of bis(1,2,4-triazole) ligands bearing different spacers: syntheses, structures and luminescent properties. CrystEngComm, 2010, 12, 3587.	1.3	19
114	Chiral magnetic metal–organic frameworks of MnII with achiral tetrazolate-based ligands by spontaneous resolution. Chemical Communications, 2010, 46, 8543.	2.2	133
115	Adjusting the Porosity and Interpenetration of Cadmium(II) Coordination Polymers by Ligand Modification: Syntheses, Structures, and Adsorption Properties. Crystal Growth and Design, 2010, 10, 1138-1144.	1.4	96
116	New Three-Dimensional Porous Metal Organic Framework with Tetrazole Functionalized Aromatic Carboxylic Acid: Synthesis, Structure, and Gas Adsorption Properties. Inorganic Chemistry, 2010, 49, 11581-11586.	1.9	133
117	Template-directed synthesis of three new open-framework metal(ii) oxalates using Co(iii) complex as template. CrystEngComm, 2010, 12, 4198.	1.3	60
118	Two unprecedented 10-connected bct topological metal–organic frameworks constructed from cadmium clusters. Chemical Communications, 2010, 46, 4890.	2.2	81
119	3D Mn ^{II} coordination polymer with alternating azide/azide/formate/formate bridged chains: synthesis, structure and magnetic properties. Dalton Transactions, 2010, 39, 56-58.	1.6	50
120	Two manganese(II) complexes based on anthracene-9-carboxylate: Syntheses, crystal structures, and magnetic properties. Transition Metal Chemistry, 2009, 34, 51-60.	0.7	14
121	Structure and magnetism of carboxylate/EO-azido-mixed-ligands bridged Cull systems. Science Bulletin, 2009, 54, 4303-4308.	4.3	7
122	Silver(I) Complexes with a Bulky Anthraceneâ€Based Dicarboxylic Ligand: Syntheses, Crystal Structures, and Luminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 523-529.	0.6	19
123	Silver(I) complexes with a bulky acridine-based carboxylic ligand: Syntheses, crystal structures, and luminescent properties. Journal of Molecular Structure, 2009, 931, 68-75.	1.8	12
124	Zinc(II) and mercury(II) coordination architectures with two pyridyl/benzimidazol-1-yl-based ligands: Crystal structures and photoluminescent properties. Inorganica Chimica Acta, 2009, 362, 3147-3154.	1.2	6
125	Tuning the formation of copper(I) coordination architectures with quinoxaline-based N,S-donor ligands by varying terminal groups of ligands and reaction temperature. Inorganica Chimica Acta, 2009, 362, 3915-3924.	1.2	15
126	Metal–organic coordination architectures of azole heterocycle ligands bearing acetic acid groups: Synthesis, structure and magnetic properties. Journal of Solid State Chemistry, 2009, 182, 2918-2923.	1.4	6

#	Article	IF	CITATIONS
127	Zn ^{II} Coordination Poylmers Based on 2,3,6,7-Anthracenetetracarboxylic Acid: Synthesis, Structures, and Luminescence Properties. Crystal Growth and Design, 2009, 9, 4840-4846.	1.4	103
128	Varying Ligand Backbones for Modulating the Interpenetration of Coordination Polymers Based on Homoleptic Cobalt(II) Nodes. Crystal Growth and Design, 2009, 9, 3904-3909.	1.4	105
129	Zinc and Cadmium Coordination Polymers with Bis(tetrazole) Ligands Bearing Flexible Spacers: Synthesis, Crystal Structures, and Properties. Crystal Growth and Design, 2009, 9, 2280-2286.	1.4	103
130	Single-Crystal-to-Single-Crystal Transformation in Unusual Three-Dimensional Manganese(II) Frameworks Exhibiting Unprecedented Topology and Homospin Ferrimagnet. Inorganic Chemistry, 2009, 48, 7111-7116.	1.9	76
131	Metal Coordination Architectures of 2,3â€Bis(triazolâ€1â€ylmethyl)quinoxaline: Effect of Metal Ion and Counterion on Complex Structures. European Journal of Inorganic Chemistry, 2008, 2008, 1059-1066.	1.0	30
132	Zinc(ii) coordination architectures with two bulky anthracene-based carboxylic ligands: crystal structures and luminescent properties. CrystEngComm, 2008, 10, 681.	1.3	102
133	Novel Ag(I) complexes with azole heterocycle ligands bearing acetic acid group: synthesis, characterization and crystal structures. CrystEngComm, 2008, 10, 1037.	1.3	50
134	Zn(<scp>ii</scp>) coordination architectures with mixed ligands of dipyrido[3,2-d â^¶â€‰2′,3′-f]quinoxaline/2,3-di-2-pyridylquinoxaline and benzenedicarboxylate: synthe structures, and photoluminescence properties. CrystEngComm, 2008, 10, 349-356.	es es 3cryst	al 104
135	Tuning silver(I) coordination architectures by ligands design: from dinuclear, trinuclear, to 1D and 3D frameworks. CrystEngComm, 2008, 10, 1866.	1.3	85
136	Silver(I) coordination architectures with quinoxaline-based N,S-donor ligands: structures and luminescent properties. CrystEngComm, 2008, 10, 1595.	1.3	8
137	d10 Metal complexes assembled from isomeric benzenedicarboxylates and 3-(2-pyridyl)pyrazole showing 1D chain structures: syntheses, structures and luminescent properties. Dalton Transactions, 2008, , 1302.	1.6	143
138	4,4′-Bis(benzimidazol-1-yl)biphenyl. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o141-o141.	0.2	2
139	catena-Poly[[[diiodidocadmium(II)]-μ-1-(4-pyridylmethyl)-1H-benzimidazole] methanol hemisolvate]. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m200-m200.	0.2	0
140	{Bis[4-(2-pyridyl)pyrimidin-2-yl] sulfide}dibromidocobalt(II). Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m856-m856.	0.2	0
141	Metal–organic coordination architectures of 9,10-bis(N-benzimidazolyl)anthracene: syntheses, structures and emission properties. CrystEngComm, 2007, 9, 412-420.	1.3	26
142	trans-Bis[(2E)-3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one-l̂º2N,O]bis(perchlorato-l̂ºO)cadmium(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1092-m1093.	0.2	4
143	catena-Poly[[[μ-5,5′-di-2-pyridyl-1,1′-(p-phenylenedimethylene)bis(1H-tetrazole)]-[chloridocopper(II)]-di-ι acetonitrile solvate]. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1393-m1394.	/4-chlorido 0.2	-[chloridocor 2
144	Syntheses, Crystal Structures, and Magnetoâ^'Structural Correlations of Novel Cull Complexes Containing a Planar [Cu(μ-L1)]2 (HL1 = 3-(2-Pyridyl)pyrazole) Unit:  From Dinuclear to Tetranuclear and Then to One-Dimensional Compounds. Inorganic Chemistry, 2006, 45, 162-173.	1.9	136

#	Article	IF	CITATIONS
145	Syntheses, Structure, and Properties of the Metal Complexes with 3-(2-Pyridyl)pyrazole-Based Ligands: Tuning the Complex Structures by Ligand Modifications. Crystal Growth and Design, 2006, 6, 99-108.	1.4	44
146	Molecular Cage and 1-D Coordination Architectures Assembled from Silver(I) and Dithioether Ligands with Bulky Anthrene Spacers:  Syntheses, Crystal Structures, and Emission Properties. Crystal Growth and Design, 2006, 6, 648-655.	1.4	34
147	A new one-dimensional CdII complex, [Cd(μ2-L)2]n (HL=3-(2-pyridyl)pyrazole) with planar [Cd(μ2-L)]2 unit: synthesis, crystal structure and emission property. Journal of Molecular Structure, 2006, 796, 18-22.	1.8	14
148	New 3-D supramolecular networks formed via hydrogen bonding and π–π stacking interactions: Synthesis, characterization and crystal structures. Journal of Molecular Structure, 2006, 798, 34-39.	1.8	24
149	Synthesis, characterization and crystal structures of two discrete Cu(II) complexes with mixed-ligands: [Cu(mal)(L)(H2O)]·H2O and [Cu(Phmal)(L)2] (mal=malonate dianion,) Tj ETQq1 1 0.784314 rgBT	/Overlocl	2 10 Tf 50 5
117	2005, 738, 183-187,	2.10	20
150	Computational Study of Zn Single-Atom Catalysts on In ₂ O ₃ Nanomaterials for Direct Synthesis of Acetic Acid from CH ₄ and CO ₂ . ACS Applied Nano Materials, 0, , .	2.4	5