Christine MounaÃ⁻m-rousselle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2212399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance of ammonia fuel in a spark assisted compression Ignition engine. International Journal of Engine Research, 2022, 23, 781-792.	2.3	23
2	Ammonia as Fuel for Transportation to Mitigate Zero Carbon Impact. Energy, Environment, and Sustainability, 2022, , 257-279.	1.0	10
3	An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature. Proceedings of the Combustion Institute, 2021, 38, 2163-2174.	3.9	210
4	Experimental investigation on ammonia combustion behavior in a spark-ignition engine by means of laminar and turbulent expanding flames. Proceedings of the Combustion Institute, 2021, 38, 5859-5868.	3.9	73
5	First Study on Ammonia Spray Characteristics with a Current GDI Engine Injector. Fuels, 2021, 2, 253-271.	2.7	27
6	Operating Limits for Ammonia Fuel Spark-Ignition Engine. Energies, 2021, 14, 4141.	3.1	48
7	Improvement of Turbulent Burning Velocity Measurements by Schlieren Technique, for High Pressure Isooctane-Air Premixed Flames. Combustion Science and Technology, 2020, 192, 416-432.	2.3	4
8	Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures. Fuel, 2020, 263, 116653.	6.4	202
9	Ammonia as Fuel for Low-Carbon Spark-Ignition Engines of Tomorrow's Passenger Cars. Frontiers in Mechanical Engineering, 2020, 6, .	1.8	54
10	Effect of exhaust gas recirculation composition on soot in ECN spray A conditions. Oil and Gas Science and Technology, 2020, 75, 34.	1.4	7
11	Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions. Fuel, 2020, 269, 117448.	6.4	238
12	Characterization of the ECN spray A in different facilities. Part 2: spray vaporization and combustion. Oil and Gas Science and Technology, 2020, 75, 78.	1.4	6
13	Editorial: Main results from Engine Combustion Network – France project: characterization of new experimental facilities and study of Diesel evaporation and combustion processes using advanced optical diagnostics. Oil and Gas Science and Technology, 2020, 75, E1.	1.4	0
14	Editorial: Fundamental Characterization and Performance of Alternative Fuels. Frontiers in Mechanical Engineering, 2020, 6, .	1.8	0
15	Bivariate 2D empirical mode decomposition for analyzing instantaneous turbulent velocity field in unsteady flows. Experiments in Fluids, 2019, 60, 1.	2.4	4
16	Butanol and gasoline-like blend combustion characteristics for injection conditions of gasoline compression ignition combustion mode. Fuel, 2019, 258, 116115.	6.4	10
17	An experimental study on turbulent premixed expanding flames using simultaneously Schlieren and tomography techniques. Experimental Thermal and Fluid Science, 2018, 95, 11-17.	2.7	19
18	lsolating the effects of reactivity stratification in reactivity-controlled compression ignition with iso-octane and <i>n</i> -heptane on a light-duty multi-cylinder engine. International Journal of Engine Research, 2018, 19, 907-926.	2.3	26

IF # ARTICLE CITATIONS Characterization of thermodiffusive and hydrodynamic mechanisms on the cellular instability of 5.2 syngas fuel blended with CH4 or CO2. Combustion and Flame, 2018, 193, 481-490. Screening Method for Fuels in Homogeneous Charge Compression Ignition Engines: Application to 20 5.122 Valeric Biofuels. Energy & amp; Fuels, 2017, 31, 607-614. Effects of Temperature and Equivalence Ratio on Laminar Burning Speeds of α-Pinene/Benzene/Air Mixtures for Different Fuel Proportions. Combustion Science and Technology, 2016, 188, 2128-2136. 2.3 0D modeling aspects of flame stretch in spark ignition engines and comparison with experimental 22 10.1 14 results. Applied Energy, 2016, 179, 401-412. Comparison of Combustion Characteristics of Magnesium and Aluminum Powders. Combustion 2.3 Science and Technology, 2016, 188, 1857-1877. Calibration strategy of diesel-fuel spray atomization models using a design of experiment method. 24 2.3 10 International Journal of Engine Research, 2016, 17, 713-731. Fuel performances in Spark-Ignition (SI) engines: Impact of flame stretch. Combustion and Flame, 2016, 5.2 166, 98-112. Application of jet propellant-8 to premixed charge ignition combustion in a single-cylinder diesel 26 2.39 engine. International Journal of Engine Research, 2015, 16, 92-103. Combustion and Emissions Characteristics of Valeric Biofuels in a Compression Ignition Engine. 1.9 Journal of Energy Engineering - ASCE, 2014, 140, . Combustion Characteristics of Two Biogenic Volatile Organic Compounds: L-Fenchone and 28 2.3 3 3-Hexen-1-OL. Combustion Science and Technology, 2014, 186, 1284-1294. Determination of Laminar Burning Speeds and Markstein Lengths of <i>p</i>-Cymene/Air Mixtures Using 2.3 Three Models. Combustion Science and Technology, 2014, 186, 490-503. Experimental determination of laminar burning velocity for butanol/iso-octane and 30 6.4 89 ethanol/iso-octane blends for different initial pressures. Fuel, 2013, 106, 310-317. Experimental and numerical analysis of nitric oxide effect on the ignition of iso-octane in a single 5.2 86 cylinder HCCI engine. Combustion and Flame, 2013, 160, 1476-1483. Influence of O₂-enriched intake air with CO₂ dilution on the combustion process of an optically accessible spark-ignition engine. International Journal of Engine Research, 32 2.3 10 2013, 14, 34-44. Combustion Characteristics of <i>p</i>-Cymene Possibly Involved in Accelerating Forest Fires. 2.3 Combustion Science and Technology, 2013, 185, 1295-1305. Towards HCCI Control by Ozone Seeding., 2013,,. 34 8 Exhaust gas recirculation stratification to control diesel homogeneous charge compression ignition 2.3combustion. International Journal of Engine Research, 2012, 13, 429-447. Flame Speeds of α-Pinene/Air and Limonene/Air Mixtures Involved in Accelerating Forest Fires. 36 2.3 12 Combustion Science and Technology, 2012, 184, 1397-1411.

#	Article	IF	CITATIONS
37	Experimental and Detailed Kinetic Modeling Study of Ethyl Pentanoate (Ethyl Valerate) Oxidation in a Jet Stirred Reactor and Laminar Burning Velocities in a Spherical Combustion Chamber. Energy & Fuels, 2012, 26, 4735-4748.	5.1	55
38	Laminar Burning Velocities of C ₄ –C ₇ Ethyl Esters in a Spherical Combustion Chamber: Experimental and Detailed Kinetic Modeling. Energy & Fuels, 2012, 26, 6669-6677.	5.1	43
39	INFLUENCE OF FUEL PROPERTIES ON THE DIESEL INJECTION PROCESS IN NONVAPORIZING CONDITIONS. Atomization and Sprays, 2012, 22, 461-492.	0.8	47
40	Comparison of regulated and non-regulated pollutants with iso-octane/butanol and iso-octane/ethanol blends in a port-fuel injection Spark-Ignition engine. Fuel, 2012, 94, 251-261.	6.4	85
41	Influence of physical fuel properties on the injection rate in a Diesel injector. Fuel, 2012, 96, 153-160.	6.4	80
42	Experimental determination of emission and laminar burning speeds of α-pinene. Combustion and Flame, 2012, 159, 1385-1392.	5.2	20
43	Pinus pinea emissions and combustion characteristics of limonene potentially involved in accelerating forest fires. International Journal of Thermal Sciences, 2012, 57, 92-97.	4.9	21
44	MIE and flame velocity of partially oxidised aluminium dust. Journal of Loss Prevention in the Process Industries, 2012, 25, 460-466.	3.3	20
45	Combustion Characteristics of Tricomponent Fuel Blends of Ethyl Acetate, Ethyl Propionate, and Ethyl Butyrate in Homogeneous Charge Compression Ignition (HCCI). Energy & Fuels, 2011, 25, 1497-1503.	5.1	43
46	Experimental estimate of the laminar burning velocity of iso-octane in oxygen-enriched and CO2-diluted air. Combustion and Flame, 2011, 158, 2375-2383.	5.2	50
47	Experimental Characterization of Ethyl Acetate, Ethyl Propionate, and Ethyl Butanoate in a Homogeneous Charge Compression Ignition Engine. Energy & Fuels, 2011, 25, 998-1003.	5.1	41
48	Experimental determination of laminar burning velocity for butanol and ethanol iso-octane blends. Fuel, 2011, 90, 1-6.	6.4	225
49	Laminar premixed flame characteristics of hydrogen blended iso-octane–air–nitrogen mixtures. International Journal of Hydrogen Energy, 2011, 36, 985-991.	7.1	27
50	Effects of hydrogen addition under lean and diluted conditions on combustion characteristics and emissions in a spark-ignition engine. International Journal of Engine Research, 2011, 12, 466-483.	2.3	13
51	Nonlinear effects of stretch on the flame front propagation. Combustion and Flame, 2010, 157, 1825-1832.	5.2	203
52	Experimental Investigation of the Initial Stages of Flame Propagation in a Spark-Ignition Engine: Effects of Fuel, Hydrogen Addition and Nitrogen Dilution. SAE International Journal of Engines, 2010, 3, 1-19.	0.4	20
53	Evaluation of Butanol–Gasoline Blends in a Port Fuel-injection, Spark-Ignition Engine. Oil and Gas Science and Technology, 2010, 65, 345-351.	1.4	205
54	Spectroscopic Measurements of Low-Temperature Heat Release for Homogeneous Combustion Compression Ignition (HCCI) <i>n</i> -Heptane/Alcohol Mixture Combustion. Energy & Fuels, 2010, 24, 5404-5409.	5.1	35

#	Article	IF	CITATIONS
55	An experimental and kinetic modeling study of n-butanol combustion. Combustion and Flame, 2009, 156, 852-864.	5.2	279
56	Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane–air flames. International Journal of Hydrogen Energy, 2009, 34, 8329-8338.	7.1	80
57	Measurement of laminar burning speeds and Markstein lengths using a novel methodology. Combustion and Flame, 2009, 156, 1735-1743.	5.2	140
58	Effect of Dilution by Nitrogen and/or Carbon Dioxide on Methane and Iso-Octane Air Flames. Combustion Science and Technology, 2009, 181, 813-827.	2.3	121
59	Analysis of Flame and OH* Natural Emissions of n-Heptane Combustion in a Homogeneous Charge Compression Ignition (HCCI) Engine: Effect of Burnt Gas Dilution. Energy & Fuels, 2009, 23, 1406-1411.	5.1	12
60	DISCHARGE COEFFICIENTS FOR A DIESEL INJECTOR DURING COLD STARTING CONDITIONS. Small Group Research, 2009, 19, 621-631.	2.7	12
61	A scale-entropy diffusion equation to describe the multi-scale features of turbulent flames near a wall. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 6712-6724.	2.6	4
62	Effect of Pressure and Dilution on Flame Front Displacement in Boosted Spark-Ignition Engine Combustion. SAE International Journal of Fuels and Lubricants, 2008, 1, 984-992.	0.2	3
63	ESTIMATE MEASUREMENT OF SOOT DIAMETER AND VOLUME FRACTION INSIDE THE BOWL OF A DIRECT-INJECTION-COMPRESSION-IGNITION ENGINE: EFFECT OF THE EXHAUST GAS RECIRCULATION. Combustion Science and Technology, 2007, 179, 1631-1648.	2.3	7
64	Modeling laser-induced incandescence of soot: a summary and comparison of LII models. Applied Physics B: Lasers and Optics, 2007, 87, 503-521.	2.2	197
65	Soot volume fractions and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence. Applied Physics B: Lasers and Optics, 2006, 83, 413-421.	2.2	47
66	Experimental study and calculations of nitric oxide absorption in the γ(0,0) and γ(1,0) bands for strong temperature conditions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 90, 275-289.	2.3	13
67	Fractal approach to the evaluation of burning rates in the vicinity of the piston in a spark-ignition engine. Combustion and Flame, 2005, 143, 323-332.	5.2	21
68	Nitric oxide detection inside the cylinder of an SI engine by direct UV absorption spectroscopy. Optics and Lasers in Engineering, 2005, 43, 1-18.	3.8	3
69	Flame wall interaction: effect of stretch. Experimental Thermal and Fluid Science, 2003, 27, 431-437.	2.7	29
70	Droplet Sizing by Mie Scattering Interferometry in a Spark Ignition Engine. Particle and Particle Systems Characterization, 1999, 16, 160-168.	2.3	40
71	Droplet diameter and the interference fringes between reflected and refracted light. Journal Physics D: Applied Physics, 1998, 31, L59-L62.	2.8	7
72	Strain effects on the structure of counterflowing turbulent premixed flames. Proceedings of the Combustion Institute, 1994, 25, 1199-1205.	0.3	23

#	Article	IF	CITATIONS
73	Engine Performances and Emissions of Second-Generation Biofuels in Spark Ignition Engines: The Case of Methyl and Ethyl Valerates. , 0, , .		14
74	Impact of Fuel Properties and Flame Stretch on the Turbulent Flame Speed in Spark-Ignition Engines. , 0, , .		14
75	Effects of Controlling Oxygen Concentration on the Performance, Emission and Combustion Characteristics in a Downsized SI Engine. , 0, , .		7
76	Numerical and Experimental Investigation of Combustion Regimes in a Dual Fuel Engine. , 0, , .		7