
Ignacio Antonio Ciampitti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2212304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dryland maize yield potentials and constraints: A case study in western Kansas. Food and Energy Security, 2022, 11, e328.	2.0	1
2	Breeding effects on canopy light attenuation in maize: a retrospective and prospective analysis. Journal of Experimental Botany, 2022, 73, 1301-1311.	2.4	6
3	Post-silking 15N labelling reveals an enhanced nitrogen allocation to leaves in modern maize (Zea) Tj ETQq1 1 0	.784314 r 1.6	gBT ₉ /Overlock
4	Impact of High-Cadence Earth Observation in Maize Crop Phenology Classification. Remote Sensing, 2022, 14, 469.	1.8	3
5	Abnormal ear development in corn: A review. Agronomy Journal, 2022, 114, 1168-1183.	0.9	6
6	Selection for yield shifted the proportion of oil and protein in favor of low-energy seed fractions in soybean. Field Crops Research, 2022, 279, 108446.	2.3	5
7	Kernel weight contribution to yield genetic gain of maize: a global review and US case studies. Journal of Experimental Botany, 2022, 73, 3597-3609.	2.4	12
8	Environment Characterization in Sorghum (Sorghum bicolor L.) by Modeling Water-Deficit and Heat Patterns in the Great Plains Region, United States. Frontiers in Plant Science, 2022, 13, 768610.	1.7	7
9	Footprints of corn nitrogen management on the following soybean crop. Agronomy Journal, 2022, 114, 1475-1488.	0.9	6
10	Maize genetic progress in the central Pampas of Argentina: effects of contrasting sowing dates. Field Crops Research, 2022, 281, 108492.	2.3	7
11	From use efficiency to effective use of nitrogen: A dilemma for maize breeding improvement. Science of the Total Environment, 2022, 826, 154125.	3.9	21
12	Soybean management for seed composition: The perspective of U.S. farmers. Agronomy Journal, 2022, 114, 2608-2617.	0.9	2
13	A quantitative review into the contributions of biological nitrogen fixation to agricultural systems by grain legumes. European Journal of Agronomy, 2022, 136, 126514.	1.9	20
14	Seed inoculation with Azospirillum brasilense in the U.S. soybean systems. Field Crops Research, 2022, 283, 108537.	2.3	8
15	Climate Change and Management Impacts on Soybean N Fixation, Soil N Mineralization, N2O Emissions, and Seed Yield. Frontiers in Plant Science, 2022, 13, 849896.	1.7	8
16	A global dataset to parametrize critical nitrogen dilution curves for major crop species. Scientific Data, 2022, 9, .	2.4	12
17	zmm28 transgenic maize increases both N uptake- and N utilization-efficiencies. Communications Biology, 2022, 5, .	2.0	5
18	Dataset characteristics for the determination of critical nitrogen dilution curves: From past to new guidelines. European Journal of Agronomy, 2022, 139, 126568.	1.9	10

#	Article	IF	CITATIONS
19	Conditions potentially affecting corn ear formation, yield, and abnormal ears: A review. Crop, Forage and Turfgrass Management, 2022, 8, .	0.2	9
20	Establishing a critical nitrogen dilution curve for estimating nitrogen nutrition index of potato crop in tropical environments. Field Crops Research, 2022, 286, 108605.	2.3	11
21	Predicting soil test phosphorus decrease in nonâ€Pâ€fertilized conditions. European Journal of Soil Science, 2021, 72, 254-264.	1.8	6
22	Assessing the uncertainty of maize yield without nitrogen fertilization. Field Crops Research, 2021, 260, 107985.	2.3	34
23	Spatial variation of soybean seed yield and nutrient requirement in Northeast China. Crop Science, 2021, 61, 1349-1359.	0.8	1
24	Does the critical N dilution curve for maize crop vary across genotype x environment x management scenarios? - a Bayesian analysis. European Journal of Agronomy, 2021, 123, 126202.	1.9	39
25	Relative abundance of ureides differs among plant fractions in soybean. European Journal of Agronomy, 2021, 122, 126175.	1.9	6
26	Effect of hairy vetch cover crop on maize nitrogen supply and productivity at varying yield environments in Southern Brazil. Science of the Total Environment, 2021, 759, 144313.	3.9	22
27	Integrating nitrogen and waterâ€soluble carbohydrates dynamics in maize: A comparison of hybrids from different decades. Crop Science, 2021, 61, 1360-1373.	0.8	12
28	Bottlenecks and opportunities in field-based high-throughput phenotyping for heat and drought stress. Journal of Experimental Botany, 2021, 72, 5102-5116.	2.4	29
29	Use of high-resolution unmanned aerial systems imagery and machine learning to evaluate grain sorghum tolerance to mesotrione. Journal of Applied Remote Sensing, 2021, 15, .	0.6	2
30	Wheat nitrogen, phosphorus, potassium, and sulfur uptake dynamics under different management practices. Agronomy Journal, 2021, 113, 2752-2769.	0.9	11
31	Retrieving and processing agro-meteorological data from API-client sources using R software. BMC Research Notes, 2021, 14, 205.	0.6	4
32	Biological N2 fixation by soybeans grown with or without liming on acid soils in a no-till integrated crop-livestock system. Soil and Tillage Research, 2021, 209, 104923.	2.6	20
33	Nitrogen and sulfur application effects on camelina seed yield, fatty acid composition, and nutrient removal. Canadian Journal of Plant Science, 2021, 101, 353-365.	0.3	2
34	Environmental Factors Associated With Nitrogen Fixation Prediction in Soybean. Frontiers in Plant Science, 2021, 12, 675410.	1.7	20
35	Subsoil-potassium depletion accounts for the nutrient budget in high-potassium agricultural soils. Scientific Reports, 2021, 11, 11597.	1.6	8
36	A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maize. Plant Methods, 2021, 17, 60.	1.9	12

#	Article	IF	CITATIONS
37	Cover crop and early nitrogen management for common bean in a tropical noâ€ŧill system. Agronomy Journal, 2021, 113, 5143-5156.	0.9	2
38	Sulfur fertilization in soybean: A meta-analysis on yield and seed composition. European Journal of Agronomy, 2021, 127, 126285.	1.9	18
39	Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean. European Journal of Agronomy, 2021, 127, 126289.	1.9	17
40	Benchmarking Nutraceutical Soybean Composition Relative to Protein and Oil. Frontiers in Nutrition, 2021, 8, 663434.	1.6	1
41	XPolaris: an R-package to retrieve United States soil data at 30-meter resolution. BMC Research Notes, 2021, 14, 327.	0.6	4
42	An integrated approach of field, weather, and satellite data for monitoring maize phenology. Scientific Reports, 2021, 11, 15711.	1.6	4
43	Effect of tillers on corn yield: Exploring trait plasticity potential in unpredictable environments. Crop Science, 2021, 61, 3660-3674.	0.8	12
44	Vertical Canopy Profile and the Impact of Branches on Soybean Seed Composition. Frontiers in Plant Science, 2021, 12, 725767.	1.7	1
45	Do Water and Nitrogen Management Practices Impact Grain Quality in Maize?. Agronomy, 2021, 11, 1851.	1.3	12
46	Crop modeling defines opportunities and challenges for drought escape, water capture, and yield increase using chillingâ€tolerant sorghum. Plant Direct, 2021, 5, e349.	0.8	9
47	Peanut yield, nutrient uptake and nutrient requirements in different regions of China. Journal of Integrative Agriculture, 2021, 20, 2502-2511.	1.7	8
48	Attainable yield and soil texture as drivers of maize response to nitrogen: A synthesis analysis for Argentina. Field Crops Research, 2021, 273, 108299.	2.3	12
49	Does water availability affect the critical N dilution curves in crops? A case study for maize, wheat, and tall fescue crops. Field Crops Research, 2021, 273, 108301.	2.3	20
50	Revisiting the critical nitrogen dilution curve for tall fescue: A quantitative synthesis. European Journal of Agronomy, 2021, 131, 126380.	1.9	14
51	Fungicide, insecticide, and foliar fertilizer effect on soybean yield, seed composition, and canopyAretention. , 2021, 4, e20116.		4
52	The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	52
53	Soil and Climate Characterization to Define Environments for Summer Crops in Senegal. Sustainability, 2021, 13, 11739.	1.6	5
54	High-resolution unmanned aircraft systems imagery for stay-green characterization in grain sorghum (Sorghum bicolor L.). Journal of Applied Remote Sensing, 2021, 15, .	0.6	4

#	Article	IF	CITATIONS
55	Revisiting Biological Nitrogen Fixation Dynamics in Soybeans. Frontiers in Plant Science, 2021, 12, 727021.	1.7	20
56	Unraveling uncertainty drivers of the maize yield response to nitrogen: A Bayesian and machine learning approach. Agricultural and Forest Meteorology, 2021, 311, 108668.	1.9	16
57	Current Status and Future Opportunities for Grain Protein Prediction Using On- and Off-Combine Sensors: A Synthesis-Analysis of the Literature. Remote Sensing, 2021, 13, 5027.	1.8	7
58	Mitigation of soil compaction for boosting crop productivity at varying yield environments in southern Brazil. European Journal of Soil Science, 2020, 71, 1157-1172.	1.8	15
59	Preâ€planting weed detection based on ground field spectral data. Pest Management Science, 2020, 76, 1173-1182.	1.7	12
60	Late-season nitrogen fertilization on maize yield: A meta-analysis. Field Crops Research, 2020, 247, 107586.	2.3	44
61	Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agricultural and Forest Meteorology, 2020, 284, 107886.	1.9	198
62	Allometric analysis reveals enhanced reproductive allocation in historical set of soybean varieties. Field Crops Research, 2020, 248, 107717.	2.3	12
63	Dynamics of oil and fatty acid accumulation during seed development in historical soybean varieties. Field Crops Research, 2020, 248, 107719.	2.3	18
64	Relative utility of agronomic, phenological, and morphological traits for assessing genotypeâ€byâ€environment interaction in maize inbreds. Crop Science, 2020, 60, 62-81.	0.8	21
65	Hydrogen-uptake genes improve symbiotic efficiency in common beans (Phaseolus vulgaris L.). Antonie Van Leeuwenhoek, 2020, 113, 687-696.	0.7	7
66	Co-limitation and stoichiometry capture the interacting effects of nitrogen and sulfur on maize yield and nutrient use efficiency. European Journal of Agronomy, 2020, 113, 125973.	1.9	17
67	Crop Mass and N Status as Prerequisite Covariables for Unraveling Nitrogen Use Efficiency across Genotype-by-Environment-by-Management Scenarios: A Review. Plants, 2020, 9, 1309.	1.6	54
68	Bayesian approach for maize yield response to plant density from both agronomic and economic viewpoints in North America. Scientific Reports, 2020, 10, 15948.	1.6	9
69	Soybean yield, nutrient uptake and stoichiometry under different climate regions of northeast China. Scientific Reports, 2020, 10, 8431.	1.6	15
70	Co-addition of humic substances and humic acids with urea enhances foliar nitrogen use efficiency in sugarcane (Saccharum officinarum L.). Heliyon, 2020, 6, e05100.	1.4	19
71	Temporal biological nitrogen fixation pattern in soybean inoculated withÂ <i>Bradyrhizobium</i> , , 2020, 3, e20079.		13
72	Prolificacy and nitrogen internal efficiency in maize crops. Field Crops Research, 2020, 256, 107912.	2.3	18

#	Article	IF	CITATIONS
73	Allometric relationships between nitrogen uptake and transpiration to untangle interactions between nitrogen supply and drought in maize and sorghum. European Journal of Agronomy, 2020, 120, 126145.	1.9	27
74	Historical trend on seed amino acid concentration does not follow protein changes in soybeans. Scientific Reports, 2020, 10, 17707.	1.6	19
75	Soybean Yield Does Not Rely on Mineral Fertilizer in Rotation with Flooded Rice under a No-Till Integrated Crop-Livestock System. Agronomy, 2020, 10, 1371.	1.3	4
76	Narrowing Diurnal Temperature Amplitude Alters Carbon Tradeoff and Reduces Growth in C4 Crop Sorghum. Frontiers in Plant Science, 2020, 11, 1262.	1.7	17
77	Management strategies for early―and lateâ€planted soybean in the northâ€central United States. Agronomy Journal, 2020, 112, 2928-2943.	0.9	4
78	Agronomic optimal plant density for semiupright cowpea as a second crop in southeastern Brazil. Crop Science, 2020, 60, 2695-2708.	0.8	4
79	Defining optimal soybean seeding rates and associated risk across North America. Agronomy Journal, 2020, 112, 2103-2114.	0.9	27
80	Winter Wheat Yield Response to Plant Density as a Function of Yield Environment and Tillering Potential: A Review and Field Studies. Frontiers in Plant Science, 2020, 11, 54.	1.7	65
81	Production of biofuels from sorghum. Renewable and Sustainable Energy Reviews, 2020, 124, 109769.	8.2	88
82	Closing the nitrogen budget of intercropped maize and palisadegrass. European Journal of Agronomy, 2020, 119, 126093.	1.9	1
83	Maize genomes to fields (G2F): 2014–2017 field seasons: genotype, phenotype, climatic, soil, and inbred ear image datasets. BMC Research Notes, 2020, 13, 71.	0.6	38
84	Midâ€season countyâ€level corn yield forecast for US Corn Belt integrating satellite imagery and weather variables. Crop Science, 2020, 60, 739-750.	0.8	23
85	Mapping Maize Cropping Patterns in Dak Lak, Vietnam Through MODIS EVI Time Series. Agronomy, 2020, 10, 478.	1.3	5
86	Nitrogen and sulfur interaction on nutrient use efficiencies and diagnostic tools in maize. European Journal of Agronomy, 2020, 116, 126045.	1.9	29
87	Utility of Climatic Information via Combining Ability Models to Improve Genomic Prediction for Yield Within the Genomes to Fields Maize Project. Frontiers in Genetics, 2020, 11, 592769.	1.1	44
88	Nitrogen utilization efficiency in wheat: A global perspective. European Journal of Agronomy, 2020, 114, 126008.	1.9	67
89	Soybean yield response to <i>Bradyrhizobium</i> strains in fields with inoculation history in Southern Brazil. Journal of Plant Nutrition, 2019, 42, 1941-1951.	0.9	9
90	CIS approach to estimate windbreak crop yield effects in Kansas–Nebraska. Agroforestry Systems, 2019, 93, 1567-1576.	0.9	21

#	Article	IF	CITATIONS
91	Science-based intensive agriculture: Sustainability, food security, and the role of technology. Global Food Security, 2019, 23, 236-244.	4.0	56
92	A Review of Soybean Yield when Double ropped after Wheat. Agronomy Journal, 2019, 111, 677-685.	0.9	15
93	Seed yield and oil quality as affected by Camelina cultivar and planting date. Journal of Crop Improvement, 2019, 33, 202-222.	0.9	21
94	Soybean Seed Yield Response to Plant Density by Yield Environment in North America. Agronomy Journal, 2019, 111, 1923-1932.	0.9	59
95	Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils. Applied Soil Ecology, 2019, 138, 123-133.	2.1	114
96	Assessing Variation in US Soybean Seed Composition (Protein and Oil). Frontiers in Plant Science, 2019, 10, 298.	1.7	88
97	Comparison of Soy Protein Based and Commercially Available Seed Lubricants for Seed Flowability in Row Crop Planters. Applied Engineering in Agriculture, 2019, 35, 593-600.	0.3	4
98	Assessing Nitrogen Limitation in Inoculated Soybean in Southern Brazil. , 2019, 2, 1-6.		3
99	Soybean yield, biological N2 fixation and seed composition responses to additional inoculation in the United States. Scientific Reports, 2019, 9, 19908.	1.6	24
100	Assessing the influence of row spacing on soybean yield using experimental and producer survey data. Field Crops Research, 2019, 230, 98-106.	2.3	43
101	Critical Sulfur Dilution Curve and Sulfur Nutrition Index in Maize. Agronomy Journal, 2019, 111, 448-456.	0.9	10
102	Changes in the Phenotype of Winter Wheat Varieties Released Between 1920 and 2016 in Response to In-Furrow Fertilizer: Biomass Allocation, Yield, and Grain Protein Concentration. Frontiers in Plant Science, 2019, 10, 1786.	1.7	43
103	Sifting and winnowing: Analysis of farmer field data for soybean in the US North-Central region. Field Crops Research, 2018, 221, 130-141.	2.3	61
104	Analysis of Long Term Study Indicates Both Agronomic Optimal Plant Density and Increase Maize Yield per Plant Contributed to Yield Gain. Scientific Reports, 2018, 8, 4937.	1.6	102
105	Sensitivity of sorghum pollen and pistil to highâ€ŧemperature stress. Plant, Cell and Environment, 2018, 41, 1065-1082.	2.8	120
106	Interplay between nitrogen fertilizer and biological nitrogen fixation in soybean: implications on seed yield and biomass allocation. Scientific Reports, 2018, 8, 17502.	1.6	61
107	Spatial Characterization of Soybean Yield and Quality (Amino Acids, Oil, and Protein) for United States. Scientific Reports, 2018, 8, 14653.	1.6	55
108	Optimum Soybean Seeding Rates by Yield Environment in Southern Brazil. Agronomy Journal, 2018, 110, 2430-2438.	0.9	35

#	Article	IF	CITATIONS
109	Shifts in Soybean Yield, Nutrient Uptake, and Nutrient Stoichiometry: A Historical Synthesisâ€Analysis. Crop Science, 2018, 58, 43-54.	0.8	51
110	Nitrogen Management Strategies to Improve Yield and Dough Properties in Hard Red Spring Wheat. Agronomy Journal, 2018, 110, 2417-2429.	0.9	17
111	Major Management Factors Determining Spring and Winter Canola Yield in North America. Crop Science, 2018, 58, 1-16.	0.8	82
112	Forecasting maize yield at field scale based on high-resolution satellite imagery. Biosystems Engineering, 2018, 171, 179-192.	1.9	40
113	New Insights into Soybean Biological Nitrogen Fixation. Agronomy Journal, 2018, 110, 1185-1196.	0.9	124
114	Early-Season Stand Count Determination in Corn via Integration of Imagery from Unmanned Aerial Systems (UAS) and Supervised Learning Techniques. Remote Sensing, 2018, 10, 343.	1.8	51
115	Corn Yield Response to Plant Density and Nitrogen: Spatial Models and Yield Distribution. Agronomy Journal, 2018, 110, 970-982.	0.9	23
116	Maize Genomes to Fields: 2014 and 2015 field season genotype, phenotype, environment, and inbred ear image datasets. BMC Research Notes, 2018, 11, 452.	0.6	25
117	Planter Technology to Reduce Doubleâ€Planted Area and Improve Corn and Soybean Yields. Agronomy Journal, 2018, 110, 300-310.	0.9	5
118	Understanding N timing in corn yield and fertilizer N recovery: An insight from an isotopic labeled-N determination. PLoS ONE, 2018, 13, e0192776.	1.1	18
119	Evaluation of climatic variables as yieldâ€limiting factors for maize in Kansas. International Journal of Climatology, 2017, 37, 464-475.	1.5	11
120	Robust spatial frameworks for leveraging research on sustainable crop intensification. Global Food Security, 2017, 14, 18-22.	4.0	14
121	Assessing causes of yield gaps in agricultural areas with diversity in climate and soils. Agricultural and Forest Meteorology, 2017, 247, 170-180.	1.9	121
122	Farm's Sequence of Adoption of Information-intensive Precision Agricultural Technology. Applied Engineering in Agriculture, 2017, 33, 521-527.	0.3	40
123	Maize Yield and Planting Date Relationship: A Synthesis-Analysis for US High-Yielding Contest-Winner and Field Research Data. Frontiers in Plant Science, 2017, 8, 2106.	1.7	39
124	Camelina Seed Yield and Fatty Acids as Influenced by Genotype and Environment. Agronomy Journal, 2017, 109, 947-956.	0.9	42
125	A New Insight into Corn Yield:Trends from 1987 through 2015. Crop Science, 2017, 57, 2799-2811.	0.8	31
126	Spatio-temporal evaluation of plant height in corn via unmanned aerial systems. Journal of Applied Remote Sensing, 2017, 11, 1.	0.6	26

#	Article	IF	CITATIONS
127	Rewards and challenges of starting your career with onâ€farm research. CSA News, 2016, 61, 32-35.	0.1	1
128	Yield Responses to Planting Density for US Modern Corn Hybrids: A Synthesisâ€Analysis. Crop Science, 2016, 56, 2802-2817.	0.8	135
129	Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield. Remote Sensing, 2016, 8, 848.	1.8	58
130	Historical Synthesis-Analysis of Changes in Grain Nitrogen Dynamics in Sorghum. Frontiers in Plant Science, 2016, 7, 275.	1.7	14
131	Nutrient Partitioning and Stoichiometry in Unburnt Sugarcane Ratoon at Varying Yield Levels. Frontiers in Plant Science, 2016, 7, 466.	1.7	32
132	Drought-Tolerant Corn Hybrids Yield More in Drought-Stressed Environments with No Penalty in Non-stressed Environments. Frontiers in Plant Science, 2016, 7, 1534.	1.7	62
133	Can crop simulation models be used to predict local to regional maize yields and total production in the U.S. Corn Belt?. Field Crops Research, 2016, 192, 1-12.	2.3	67
134	Biomass and Nutrient Content by Sugarcane as Affected by Fertilizer Nitrogen Sources. Crop Science, 2016, 56, 1234-1244.	0.8	20
135	Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: sensitive stages and thresholds for temperature and duration. Frontiers in Plant Science, 2015, 6, 820.	1.7	142
136	High-yield maize–soybean cropping systems in the US Corn Belt. , 2015, , 17-41.		28
137	Nitrapyrin Impacts on Maize Yield and Nitrogen Use Efficiency with Springâ€Applied Nitrogen: Field Studies vs. Metaâ€Analysis Comparison. Agronomy Journal, 2014, 106, 753-760.	0.9	48
138	Nutrient Sufficiency Concepts for Modern Corn Hybrids: Impacts of Management Practices and Yield Levels. Crop Management, 2014, 13, CM-2013-0022-RS.	0.3	8
139	Understanding Global and Historical Nutrient Use Efficiencies for Closing Maize Yield Gaps. Agronomy Journal, 2014, 106, 2107-2117.	0.9	77
140	Nutrient sufficiency concepts for modern corn hybrids: Impacts of management practices and yield levels. Crops & Soils, 2014, 47, 38-44.	0.1	1
141	Social Media: A Revolution in Modern Agricultural Communication. CSA News, 2014, 59, 34-38.	0.1	0
142	Physiological Evaluations of Recent Droughtâ€Tolerant Maize Hybrids at Varying Stress Levels. Agronomy Journal, 2013, 105, 1129-1141.	0.9	57
143	Maize Nutrient Accumulation and Partitioning in Response to Plant Density and Nitrogen Rate: I. Macronutrients. Agronomy Journal, 2013, 105, 783-795.	0.9	125
144	Grain Nitrogen Source Changes over Time in Maize: A Review. Crop Science, 2013, 53, 366-377.	0.8	156

#	Article	IF	CITATIONS
145	Physiological Dynamics of Maize Nitrogen Uptake and Partitioning in Response to Plant Density and Nitrogen Stress Factors: II. Reproductive Phase. Crop Science, 2013, 53, 2588-2602.	0.8	56
146	Physiological Dynamics of Maize Nitrogen Uptake and Partitioning in Response to Plant Density and N Stress Factors: I. Vegetative Phase. Crop Science, 2013, 53, 2105-2119.	0.8	28
147	Maize Nutrient Accumulation and Partitioning in Response to Plant Density and Nitrogen Rate: II. Calcium, Magnesium, and Micronutrients. Agronomy Journal, 2013, 105, 1645-1657.	0.9	51
148	Potential Physiological Frameworks for Midâ€Season Field Phenotyping of Final Plant Nitrogen Uptake, Nitrogen Use Efficiency, and Grain Yield in Maize. Crop Science, 2012, 52, 2728-2742.	0.8	45
149	Responses of Maize Hybrids to Twinâ€Row Spatial Arrangement at Multiple Plant Densities. Agronomy Journal, 2012, 104, 1747-1756.	0.9	61
150	Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Research, 2012, 133, 48-67.	2.3	397
151	Phosphorus Budget and Soil Extractable Dynamics in Field Crop Rotations in Mollisols. Soil Science Society of America Journal, 2011, 75, 131-142.	1.2	35
152	A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Research, 2011, 121, 2-18.	2.3	274
153	Soil Carbon and Phosphorus Pools in Field Crop Rotations in Pampean Soils of Argentina. Soil Science Society of America Journal, 2011, 75, 616-625.	1.2	26
154	Pathways of Phosphorous Fraction Dynamics in Field Crop Rotations of the Pampas of Argentina. Soil Science Society of America Journal, 2011, 75, 918-926.	1.2	23
155			