Jinhui Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2212097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene expression analysis revealed Hbr-miR396b as a key piece participating in reaction wood formation of Hevea brasiliensis (rubber tree). Industrial Crops and Products, 2022, 177, 114460.	5.2	4
2	ICE-CBF-COR Signaling Cascade and Its Regulation in Plants Responding to Cold Stress. International Journal of Molecular Sciences, 2022, 23, 1549.	4.1	101
3	Alterations in Population Distribution of Liriodendron chinense (Hemsl.) Sarg. and Liriodendron tulipifera Linn. Caused by Climate Change. Forests, 2022, 13, 488.	2.1	12
4	Genomic Survey and Cold-Induced Expression Patterns of bHLH Transcription Factors in Liriodendron chinense (Hemsl) Sarg Forests, 2022, 13, 518.	2.1	10
5	Integrated mRNA and Small RNA Sequencing Reveals microRNAs Associated With Xylem Development in Dalbergia odorifera. Frontiers in Genetics, 2022, 13, 883422.	2.3	2
6	Third-Generation Sequencing Indicated that LncRNA Could Regulate eIF2D to Enhance Protein Translation Under Heat Stress in Populus simonii. Plant Molecular Biology Reporter, 2021, 39, 240-250.	1.8	4
7	Transcriptomics and Metabolomics Reveal Purine and Phenylpropanoid Metabolism Response to Drought Stress in Dendrobium sinense, an Endemic Orchid Species in Hainan Island. Frontiers in Genetics, 2021, 12, 692702.	2.3	25
8	Third-generation sequencing and metabolome analysis reveal candidate genes and metabolites with altered levels in albino jackfruit seedlings. BMC Genomics, 2021, 22, 543.	2.8	11
9	RNA Sequencing Reveals Phenylpropanoid Biosynthesis Genes and Transcription Factors for Hevea brasiliensis Reaction Wood Formation. Frontiers in Genetics, 2021, 12, 763841.	2.3	9
10	Phenotypic and molecular marker analysis uncovers the genetic diversity of the grass Stenotaphrum secundatum. BMC Genetics, 2020, 21, 86.	2.7	11
11	Third-generation sequencing found LncRNA associated with heat shock protein response to heat stress in Populus qiongdaoensis seedlings. BMC Genomics, 2020, 21, 572.	2.8	15
12	Third-Generation Sequencing Reveals LncRNA-Regulated HSP Genes in the Populus x canadensis Moench Heat Stress Response. Frontiers in Genetics, 2020, 11, 249.	2.3	10
13	Timeâ€ s pecific and pleiotropic quantitative trait loci coordinately modulate stem growth in <i>Populus</i> . Plant Biotechnology Journal, 2019, 17, 608-624.	8.3	34
14	Genetic variants in micro <scp>RNA</scp> biogenesis genes as novel indicators for secondary growth in <i>Populus</i> . New Phytologist, 2018, 219, 1263-1282.	7.3	8
15	Adaptive evolution and functional innovation of <i>Populus</i> â€specific recently evolved micro <scp>RNA</scp> s. New Phytologist, 2017, 213, 206-219.	7.3	36
16	Identification and allelic dissection uncover roles of IncRNAs in secondary growth of Populus tomentosa. DNA Research, 2017, 24, 473-486.	3.4	37
17	Allelic variation in PtoPsbW associated with photosynthesis, growth, and wood properties in Populus tomentosa. Molecular Genetics and Genomics, 2017, 292, 77-91.	2.1	10
18	Floral Nectary Morphology and Proteomic Analysis of Nectar of Liriodendron tulipifera Linn Frontiers in Plant Science, 2016, 7, 826.	3.6	34

Jinhui Chen

#	Article	IF	CITATIONS
19	Genetic variations and miRNA–target interactions contribute to natural phenotypic variations in <i>Populus</i> . New Phytologist, 2016, 212, 150-160.	7.3	17
20	Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis. Journal of Experimental Botany, 2016, 67, 3325-3338.	4.8	30
21	Association studies reveal the effect of genetic variation in IncRNA UGTRL and its putative target PtoUGT88A1 on wood formation in Populus tomentosa. Tree Genetics and Genomes, 2016, 12, 1.	1.6	8
22	Association genetics in Populus reveals the interactions between Pto-miR160a and its target Pto-ARF16. Molecular Genetics and Genomics, 2016, 291, 1069-1082.	2.1	22
23	Population genomic analysis of gibberellin-responsive long non-coding RNAs in <i>Populus</i> . Journal of Experimental Botany, 2016, 67, 2467-2482.	4.8	98
24	The genetic regulatory network centered on Pto-Wuschela and its targets involved in wood formation revealed by association studies. Scientific Reports, 2015, 5, 16507.	3.3	2
25	Exploring the Secrets of Long Noncoding RNAs. International Journal of Molecular Sciences, 2015, 16, 5467-5496.	4.1	125
26	Association genetics in Populus reveals the interactions between Pt-miR397a and its target genes. Scientific Reports, 2015, 5, 11672.	3.3	8
27	Transcript profiling of Populus tomentosa genes in normal, tension, and opposite wood by RNA-seq. BMC Genomics, 2015, 16, 164.	2.8	58
28	Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta, 2015, 241, 125-143.	3.2	109
29	Genome-Wide Analysis of Gene Expression in Response to Drought Stress in Populus simonii. Plant Molecular Biology Reporter, 2013, 31, 946-962.	1.8	46
30	Integrated Full-Length Transcriptome and MicroRNA Sequencing Approaches Provide Insights Into Salt Tolerance in Mangrove (Sonneratia apetala BuchHam.). Frontiers in Genetics, 0, 13, .	2.3	3