
Andrey P Sviridov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2211860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cavitation Induced by Janus-Like Mesoporous Silicon Nanoparticles Enhances Ultrasound Hyperthermia. Frontiers in Chemistry, 2019, 7, 393.	3.6	17
2	Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications. Nanotechnology, 2017, 28, 105102.	2.6	51
3	Nano Air Seeds Trapped in Mesoporous Janus Nanoparticles Facilitate Cavitation and Enhance Ultrasound Imaging. ACS Applied Materials & Interfaces, 2017, 9, 35234-35243.	8.0	27
4	Silicon Nanoparticles as Amplifiers of the Ultrasonic Effect in Sonodynamic Therapy. Bulletin of Experimental Biology and Medicine, 2016, 161, 296-299.	0.8	20
5	Effects of ultrasonic cavitation and heat deposition in aqueous suspensions of mesoporous silicon nanoparticles. , 2016, , .		2
6	Lowering of the cavitation threshold in aqueous suspensions of porous silicon nanoparticles for sonodynamic therapy applications. Applied Physics Letters, 2015, 107, .	3.3	42
7	Porous silicon nanoparticles as efficient sensitizers for sonodynamic therapy of cancer. Microporous and Mesoporous Materials, 2015, 210, 169-175.	4.4	89
8	Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Scientific Reports, 2014, 4, 7034.	3.3	150
9	Porous silicon nanoparticles as sensitizers for ultrasonic hyperthermia. Applied Physics Letters, 2013, 103, .	3.3	82
10	Photoluminescent biocompatible silicon nanoparticles for cancer theranostic applications. Journal of Biophotonics, 2012, 5, 529-535.	2.3	74