Steffen Porwollik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2210940/publications.pdf

Version: 2024-02-01

41 papers 1,203 citations

471509 17 h-index 32 g-index

42 all docs 42 docs citations

42 times ranked 1608 citing authors

#	Article	IF	CITATIONS
1	Eradication of Intracellular <i>Salmonella</i> Typhimurium by Polyplexes of Acidâ€Transforming Chitosan and Fragment DNA. Macromolecular Bioscience, 2021, 21, e2000408.	4.1	4
2	The Multidrug Efflux System AcrABZ-TolC Is Essential for Infection of <i>Salmonella</i> Typhimurium by the Flagellum-Dependent Bacteriophage Chi. Journal of Virology, 2021, 95, .	3.4	18
3	Mechanisms of Salmonella Attachment and Survival on In-Shell Black Peppercorns, Almonds, and Hazelnuts. Frontiers in Microbiology, 2020, 11, 582202.	3.5	3
4	SpoT Induces Intracellular Salmonella Virulence Programs in the Phagosome. MBio, 2020, 11, .	4.1	17
5	Import of Aspartate and Malate by DcuABC Drives H2/Fumarate Respiration to Promote Initial Salmonella Gut-Lumen Colonization in Mice. Cell Host and Microbe, 2020, 27, 922-936.e6.	11.0	58
6	Identification of Novel Genes Mediating Survival of Salmonella on Low-Moisture Foods via Transposon Sequencing Analysis. Frontiers in Microbiology, 2020, 11, 726.	3.5	18
7	Salmonella enterica Serovar Typhimurium 14028s Genomic Regions Required for Colonization of Lettuce Leaves. Frontiers in Microbiology, 2020, 11, 6.	3.5	9
8	Glycolytic reprograming in Salmonella counters NOX2-mediated dissipation of Î"pH. Nature Communications, 2020, 11, 1783.	12.8	19
9	Contribution of the Cpx envelope stress system to metabolism and virulence regulation in Salmonella enterica serovar Typhimurium. PLoS ONE, 2019, 14, e0211584.	2.5	19
10	Discovery of <i>Salmonella</i> trehalose phospholipids reveals functional convergence with mycobacteria. Journal of Experimental Medicine, 2019, 216, 757-771.	8.5	20
11	A macrophage-based screen identifies antibacterial compounds selective for intracellular Salmonella Typhimurium. Nature Communications, 2019, 10, 197.	12.8	59
12	Genes affecting progression of bacteriophage P22 infection in <i>Salmonella</i> identified by transposon and single gene deletion screens. Molecular Microbiology, 2018, 108, 288-305.	2.5	28
13	Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a Tomato Soft Rot. Applied and Environmental Microbiology, 2018, 84, .	3.1	17
14	Zinc-dependent substrate-level phosphorylation powers Salmonella growth under nitrosative stress of the innate host response. PLoS Pathogens, 2018, 14, e1007388.	4.7	23
15	Neutral barcoding of genomes reveals the dynamics of Salmonella colonization in cattle and their peripheral lymph nodes. Veterinary Microbiology, 2018, 220, 97-106.	1.9	7
16	Genome-Wide Comparative Functional Analyses Reveal Adaptations of Salmonella sv. Newport to a Plant Colonization Lifestyle. Frontiers in Microbiology, 2018, 9, 877.	3.5	22
17	Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing. Applied and Environmental Microbiology, 2017, 83, .	3.1	78
18	Contribution of Asparagine Catabolism to Salmonella Virulence. Infection and Immunity, 2017, 85, .	2.2	13

#	Article	IF	CITATIONS
19	Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol. Frontiers in Microbiology, 2017, 8, 1828.	3.5	24
20	A simplified multiplex PCR-based typing method for common Salmonella enterica serovars supported by online server-based detection system. Indian Journal of Medical Research, 2017, 146, 272.	1.0	2
21	Draft Genome Sequence of Salmonella enterica subsp. <i>enterica </i> Serovar Orion Strain CRJJGF_00093 (Phylum <i>Gammaproteobacteria </i>). Genome Announcements, 2016, 4, .	0.8	6
22	DksA-Dependent Transcriptional Regulation in Salmonella Experiencing Nitrosative Stress. Frontiers in Microbiology, 2016, 7, 444.	3.5	27
23	Draft Genome Sequence of Salmonella enterica subsp. <i>diarizonae</i> Serovar 61:k:1,5,(7) Strain CRJJGF_00165 (Phylum <i>Gammaproteobacteria</i>). Genome Announcements, 2016, 4, .	0.8	4
24	Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Bardo Strain CRJJGF_00099 (Phylum Gammaproteobacteria). Genome Announcements, 2016, 4, .	0.8	7
25	Genetic Determinants of Salmonella enterica Serovar Typhimurium Proliferation in the Cytosol of Epithelial Cells. Infection and Immunity, 2016, 84, 3517-3526.	2.2	34
26	Involvement of the <scp>R</scp> cs regulon in the persistence of <scp><i>Scp><i>Sc/i></i></i></scp> <i>almonella</i> <scp>T</scp> yphimurium in tomatoes. Environmental Microbiology Reports, 2016, 8, 928-935.	2.4	4
27	Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Putten Strain CRJJGF_00159 (Phylum Gammaproteobacteria). Genome Announcements, 2016, 4, .	0.8	4
28	Draft Genome Sequence of Salmonella enterica subsp. <i>enterica </i> Serovar Blockley Strain CRJJGF_00147 (Phylum <i>Gammaproteobacteria </i>). Genome Announcements, 2016, 4, .	0.8	4
29	Draft Genome Sequence of <i>Salmonella enterica</i> subsp. <i>enterica</i> Serovar Kiambu Strain CRJJGF_00061 (Phylum <i>Gammaproteobacteria</i>). Genome Announcements, 2016, 4, .	0.8	4
30	Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Lille Strain CRJJGF_000101 (Phylum Gammaproteobacteria). Genome Announcements, 2016, 4, .	0.8	4
31	Draft Genome Sequence of <i>Salmonella enterica</i> subsp. <i>enterica</i> Serovar Widemarsh Strain CRJJGF_00058 (Phylum <i>Gammaproteobacteria</i>). Genome Announcements, 2016, 4, .	0.8	4
32	Novel Two-Step Hierarchical Screening of Mutant Pools Reveals Mutants under Selection in Chicks. Infection and Immunity, 2016, 84, 1226-1238.	2.2	10
33	Persistent Infections by Nontyphoidal <i>Salmonella</i> Infectious Diseases, 2016, 62, 879-886.	5.8	98
34	Solid tumors provide niche-specific conditions that lead to preferential growth of <i>Salmonella</i> Oncotarget, 2016, 7, 35169-35180.	1.8	35
35	<i>rpoS</i> -Regulated Core Genes Involved in the Competitive Fitness of Salmonella enterica Serovar Kentucky in the Intestines of Chickens. Applied and Environmental Microbiology, 2015, 81, 502-514.	3.1	39
36	Analysis of Two Complementary Single-Gene Deletion Mutant Libraries of Salmonella Typhimurium in Intraperitoneal Infection of BALB/c Mice. Frontiers in Microbiology, 2015, 6, 1455.	3.5	15

STEFFEN PORWOLLIK

#	Article	IF	CITATION
37	Defined Single-Gene and Multi-Gene Deletion Mutant Collections in Salmonella enterica sv Typhimurium. PLoS ONE, 2014, 9, e99820.	2.5	140
38	Identification of a Salmonella ancillary copper detoxification mechanism by a comparative analysis of the genome-wide transcriptional response to copper and zinc excess. Microbiology (United Kingdom), 2014, 160, 1659-1669.	1.8	27
39	The 4â€cysteine zincâ€finger motif of the <scp>RNA</scp> polymerase regulator <scp>DksA</scp> serves as a thiol switch for sensing oxidative and nitrosative stress. Molecular Microbiology, 2014, 91, 790-804.	2.5	58
40	Evolutionary Genomics of Salmonella enterica Subspecies. MBio, 2013, 4, .	4.1	38
41	Analysis of Pools of Targeted Salmonella Deletion Mutants Identifies Novel Genes Affecting Fitness during Competitive Infection in Mice. PLoS Pathogens, 2009, 5, e1000477.	4.7	178