Paul W Burridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2210625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemically defined generation of human cardiomyocytes. Nature Methods, 2014, 11, 855-860.	9.0	1,320
2	Production of De Novo Cardiomyocytes: Human Pluripotent Stem Cell Differentiation and Direct Reprogramming. Cell Stem Cell, 2012, 10, 16-28.	5.2	616
3	Human induced pluripotent stem cell–derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine, 2016, 22, 547-556.	15.2	573
4	A Universal System for Highly Efficient Cardiac Differentiation of Human Induced Pluripotent Stem Cells That Eliminates Interline Variability. PLoS ONE, 2011, 6, e18293.	1.1	363
5	A physical map of the mouse genome. Nature, 2002, 418, 743-750.	13.7	316
6	High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Science Translational Medicine, 2017, 9, .	5.8	297
7	Improved Human Embryonic Stem Cell Embryoid Body Homogeneity and Cardiomyocyte Differentiation from a Novel V-96 Plate Aggregation System Highlights Interline Variability. Stem Cells, 2007, 25, 929-938.	1.4	275
8	Screening Drug-Induced Arrhythmia Using Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes and Low-Impedance Microelectrode Arrays. Circulation, 2013, 128, S3-13.	1.6	269
9	Human Stem Cells for Modeling Heart Disease and for Drug Discovery. Science Translational Medicine, 2014, 6, 239ps6.	5.8	175
10	Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes as an In Vitro Model for Coxsackievirus B3–Induced Myocarditis and Antiviral Drug Screening Platform. Circulation Research, 2014, 115, 556-566.	2.0	134
11	Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses InÂVitro. Cell Stem Cell, 2016, 19, 311-325.	5.2	131
12	MicroRNA-302 Increases Reprogramming Efficiency via Repression of NR2F2. Stem Cells, 2013, 31, 259-268.	1.4	121
13	A Review of Human Pluripotent Stem Cell-Derived Cardiomyocytes for High-Throughput Drug Discovery, Cardiotoxicity Screening, and Publication Standards. Journal of Cardiovascular Translational Research, 2013, 6, 22-30.	1.1	114
14	Chemically Defined Culture and Cardiomyocyte Differentiation of Human Pluripotent Stem Cells. Current Protocols in Human Genetics, 2015, 87, 21.3.1-21.3.15.	3.5	112
15	Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling. Stem Cells, 2018, 36, 265-277.	1.4	111
16	Molecular Imaging of Stem Cells: Tracking Survival, Biodistribution, Tumorigenicity, and Immunogenicity. Theranostics, 2012, 2, 335-345.	4.6	107
17	Use of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes in Preclinical Cancer Drug Cardiotoxicity Testing: A Scientific Statement From the American Heart Association. Circulation Research, 2019, 125, e75-e92.	2.0	103
18	Lymphoangiocrine signals promote cardiac growth and repair. Nature, 2020, 588, 705-711.	13.7	103

PAUL W BURRIDGE

#	Article	IF	CITATIONS
19	Use of human induced pluripotent stem cell–derived cardiomyocytes to assess drug cardiotoxicity. Nature Protocols, 2018, 13, 3018-3041.	5.5	102
20	Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2. Journal of Clinical Investigation, 2017, 127, 1505-1516.	3.9	101
21	Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annual Review of Pharmacology and Toxicology, 2018, 58, 83-103.	4.2	89
22	Characterization of the molecular mechanisms underlying increased ischemic damage in the <i>aldehyde dehydrogenase 2</i> genetic polymorphism using a human induced pluripotent stem cell model system. Science Translational Medicine, 2014, 6, 255ra130.	5.8	84
23	Negligible-Cost and Weekend-Free Chemically Defined Human iPSC Culture. Stem Cell Reports, 2020, 14, 256-270.	2.3	80
24	Induced Pluripotent Stem Cells from Familial Alzheimer's Disease Patients Differentiate into Mature Neurons with Amyloidogenic Properties. Stem Cells and Development, 2014, 23, 2996-3010.	1.1	75
25	A Human Pluripotent Stem Cell Surface N-Glycoproteome Resource Reveals Markers, Extracellular Epitopes, and Drug Targets. Stem Cell Reports, 2014, 3, 185-203.	2.3	73
26	Generation of Human iPSCs from Human Peripheral Blood Mononuclear Cells Using Non-integrative Sendai Virus in Chemically Defined Conditions. Methods in Molecular Biology, 2013, 1036, 81-88.	0.4	72
27	Derivation of Highly Purified Cardiomyocytes from Human Induced Pluripotent Stem Cells Using Small Molecule-modulated Differentiation and Subsequent Glucose Starvation. Journal of Visualized Experiments, 2015, , .	0.2	68
28	Plasminogen Activator Inhibitor Type I Controls Cardiomyocyte Transforming Growth Factor-Î ² and Cardiac Fibrosis. Circulation, 2017, 136, 664-679.	1.6	64
29	Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine. Annual Review of Genetics, 2015, 49, 461-484.	3.2	63
30	Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: What is missing?. , 2016, 168, 113-125.		61
31	High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry. Journal of Visualized Experiments, 2014, , 52010.	0.2	56
32	Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.	9.4	55
33	Novel codon-optimized mini-intronic plasmid for efficient, inexpensive and xeno-free induction of pluripotency. Scientific Reports, 2015, 5, 8081.	1.6	51
34	Accurate nanoelectrode recording of human pluripotent stem cell-derived cardiomyocytes for assaying drugs and modeling disease. Microsystems and Nanoengineering, 2017, 3, 16080.	3.4	49
35	Identification of Drug Transporter Genomic Variants and Inhibitors That Protect Against Doxorubicin-Induced Cardiotoxicity. Circulation, 2022, 145, 279-294.	1.6	46
36	Pravastatin reverses obesity-induced dysfunction of induced pluripotent stem cell-derived endothelial cells via a nitric oxide-dependent mechanism. European Heart Journal, 2015, 36, 806-816.	1.0	40

PAUL W BURRIDGE

#	Article	IF	CITATIONS
37	Acute CD47 Blockade During Ischemic Myocardial Reperfusion Enhances Phagocytosis-Associated Cardiac Repair. JACC Basic To Translational Science, 2017, 2, 386-397.	1.9	40
38	Engraftment of human embryonic stem cell derived cardiomyocytes improves conduction in an arrhythmogenic in vitro model. Journal of Molecular and Cellular Cardiology, 2012, 53, 15-23.	0.9	37
39	Hematopoiesis from Human Embryonic Stem Cells: Overcoming the Immune Barrier in Stem Cell Therapies. Stem Cells, 2006, 24, 815-824.	1.4	36
40	RARG variant predictive of doxorubicin-induced cardiotoxicity identifies a cardioprotective therapy. Cell Stem Cell, 2021, 28, 2076-2089.e7.	5.2	36
41	Highly Efficient Directed Differentiation of Human Induced Pluripotent Stem Cells into Cardiomyocytes. Methods in Molecular Biology, 2013, 997, 149-161.	0.4	35
42	Modeling Cardiovascular Diseases with Patient-Specific Human Pluripotent Stem Cell-Derived Cardiomyocytes. Methods in Molecular Biology, 2015, 1353, 119-130.	0.4	35
43	Genetic Mosaicism in Calmodulinopathy. Circulation Genomic and Precision Medicine, 2019, 12, 375-385.	1.6	33
44	Targeting OCT3 attenuates doxorubicin-induced cardiac injury. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
45	Stage-specific Effects of Bioactive Lipids on Human iPSC Cardiac Differentiation and Cardiomyocyte Proliferation. Scientific Reports, 2018, 8, 6618.	1.6	32
46	Multi-cellular interactions sustain long-term contractility of human pluripotent stem cell-derived cardiomyocytes. American Journal of Translational Research (discontinued), 2014, 6, 724-35.	0.0	32
47	Challenges and strategies for generating therapeutic patient-specific hemangioblasts and hematopoietic stem cells from human pluripotent stem cells. International Journal of Developmental Biology, 2010, 54, 965-990.	0.3	29
48	Silencing of <i>MYH7</i> ameliorates disease phenotypes in human iPSC-cardiomyocytes. Physiological Genomics, 2020, 52, 293-303.	1.0	29
49	Genetic Variants Associated with Therapy-Related Cardiomyopathy among Childhood Cancer Survivors of African Ancestry. Cancer Research, 2021, 81, 2556-2565.	0.4	24
50	Association of <i>GSTM1</i> null variant with anthracyclineâ€related cardiomyopathy after childhood cancer—A Children's Oncology Group ALTE03N1 report. Cancer, 2020, 126, 4051-4058.	2.0	23
51	Targeting the Microtubule EB1-CLASP2 Complex Modulates Na _V 1.5 at Intercalated Discs. Circulation Research, 2021, 129, 349-365.	2.0	23
52	hiPSCs in cardio-oncology: deciphering the genomics. Cardiovascular Research, 2019, 115, 935-948.	1.8	21
53	Pluripotent stem cell heterogeneity and the evolving role of proteomic technologies in stem cell biology. Proteomics, 2011, 11, 3947-3961.	1.3	20
54	Human embryonic stem cells as a model for nutritional programming: An evaluation. Reproductive Toxicology, 2005, 20, 353-367.	1.3	18

PAUL W BURRIDGE

#	Article	IF	CITATIONS
55	Late onset heart failure after childhood chemotherapy. European Heart Journal, 2019, 40, 798-800.	1.0	18
56	GS-967 and Eleclazine Block Sodium Channels in Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes. Molecular Pharmacology, 2020, 98, 540-547.	1.0	17
57	Structural and Functional Characterization of a Na _v 1.5-Mitochondrial Couplon. Circulation Research, 2021, 128, 419-432.	2.0	15
58	Are These Cardiomyocytes? Protocol Development Reveals Impact of Sample Preparation on the Accuracy of Identifying Cardiomyocytes by Flow Cytometry. Stem Cell Reports, 2019, 12, 395-410.	2.3	14
59	Human In Vitro Models for Assessing the Genomic Basis of Chemotherapy-Induced Cardiovascular Toxicity. Journal of Cardiovascular Translational Research, 2020, 13, 377-389.	1.1	11
60	The future role of pharmacogenomics in anticancer agent-induced cardiovascular toxicity. Pharmacogenomics, 2018, 19, 79-82.	0.6	10
61	Patient-specific pluripotent stem cells in doxorubicin cardiotoxicity: A new window into personalized medicine. Progress in Pediatric Cardiology, 2014, 37, 23-27.	0.2	9
62	Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 367-375.	0.7	8
63	Cellular model systems to study cardiovascular injury from chemotherapy. Journal of Thrombosis and Thrombolysis, 2021, 51, 890-896.	1.0	8
64	Precise and Cost-Effective Nanopore Sequencing for Post-GWAS Fine-Mapping and Causal Variant Identification. IScience, 2020, 23, 100971.	1.9	7
65	Doxorubicin induces caspase-mediated proteolysis of KV7.1. Communications Biology, 2018, 1, 155.	2.0	5
66	Unraveling Difficult Answers: From Genotype to Phenotype in Coronary Artery Disease. Cell Stem Cell, 2019, 24, 203-205.	5.2	5
67	An updated protocol for the cost-effective and weekend-free culture of human induced pluripotent stem cells. STAR Protocols, 2021, 2, 100213.	0.5	5
68	Use of hiPSC to explicate genomic predisposition to anthracycline-induced cardiotoxicity. Pharmacogenomics, 2021, 22, 41-54.	0.6	4
69	A Novel Locus on 6p21.2 for Cancer Treatment–Induced Cardiac Dysfunction Among Childhood Cancer Survivors. Journal of the National Cancer Institute, 2022, 114, 1109-1116.	3.0	4
70	Pluripotent Stem Cell Modeling of Anticancer Therapy–Induced Cardiotoxicity. Current Cardiology Reports, 2020, 22, 56.	1.3	2
71	Doxorubicin-Induced Ascension of Resident Cardiac Macrophages. Circulation Research, 2020, 127, 628-630.	2.0	1
72	Generating a Costâ€Effective, Weekendâ€Free Chemically Defined Human Induced Pluripotent Stem Cell (hiPSC) Culture Medium. Current Protocols in Stem Cell Biology, 2020, 53, e110.	3.0	1

#	Article	IF	CITATIONS
73	Letter by Costantine et al Regarding Article, "Pravastatin Versus Placebo in Pregnancies at High Risk of Term Preeclampsiaâ€: Circulation, 2022, 145, e115-e116.	1.6	1
74	Generation and Application of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Cardiac and Vascular Biology, 2017, , 67-106.	0.2	0
75	Prime time for doxorubicin-induced cardiotoxicity genetic testing. Pharmacogenomics, 2022, 23, 335-338.	0.6	0