
José M S S Esperança

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2210564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into CO2 hydrates formation and dissociation at isochoric conditions using a rocking cell apparatus. Chemical Engineering Science, 2022, 249, 117319.	1.9	17
2	Unveiling the Temperature Influence on the Sorptive Behaviour of ZIF-8 Composite Materials Impregnated with [CnMIM][B(CN)4] Ionic Liquids. Processes, 2022, 10, 247.	1.3	1
3	Environmentally friendly carrageenan-based ionic-liquid driven soft actuators. Materials Advances, 2022, 3, 937-945.	2.6	4
4	Effect of Thiouronium-Based Ionic Liquids on the Formation and Growth of CO2 (sI) and THF (sII) Hydrates. International Journal of Molecular Sciences, 2022, 23, 3292.	1.8	3
5	Improvement of New Dianionic Ionic Liquids vs Monoanionic in Solubility of Poorly Water-Soluble Drugs. Journal of Pharmaceutical Sciences, 2021, 110, 2489-2500.	1.6	12
6	Photocurable temperature activated humidity hybrid sensing materials for multifunctional coatings. Polymer, 2021, 221, 123635.	1.8	3
7	SelinfDB: A Database of Selectivity at Infinite Dilution for Liquid–Liquid Extraction. Industrial & Engineering Chemistry Research, 2021, 60, 8209-8217.	1.8	4
8	Viscosity of [C4mim][(CF3SO2)2N], [C4mim][N(CN)2], [C2mim][C2H5SO4] and [Aliquat][N(CN)2] in a wide temperature range. Measurement, correlation, and interpretation. Journal of Molecular Liquids, 2021, 337, 116482.	2.3	4
9	New non-toxic biocompatible dianionic ionic liquids that enhance the solubility of oral drugs from BCS class II. Journal of Ionic Liquids, 2021, 1, 100003.	1.0	7
10	New luminescent tetracoordinate boron complexes: an in-depth experimental and theoretical characterisation and their application in OLEDs. Inorganic Chemistry Frontiers, 2021, 8, 3960-3983.	3.0	13
11	New Non-Toxic N-alkyl Cholinium-Based Ionic Liquids as Excipients to Improve the Solubility of Poorly Water-Soluble Drugs. Symmetry, 2021, 13, 2053.	1.1	13
12	Surface Coatings and Treatments for Controlled Hydrate Formation: A Mini Review. Physchem, 2021, 1, 272-287.	0.5	7
13	Biopolymer Electrolyte Membranes (BioPEMs) for Sustainable Primary Redox Batteries. Advanced Sustainable Systems, 2020, 4, 1900110.	2.7	5
14	Design of Ionic-Liquid-Based Hybrid Polymer Materials with a Magnetoactive and Electroactive Multifunctional Response. ACS Applied Materials & Interfaces, 2020, 12, 42089-42098.	4.0	14
15	Paramagnetic Ionic Liquid/Metal Organic Framework Composites for CO2/CH4 and CO2/N2 Separations. Frontiers in Chemistry, 2020, 8, 590191.	1.8	22
16	QSPR Modeling of Liquidâ€liquid Equilibria in Twoâ€phase Systems of Water and Ionic Liquid. Molecular Informatics, 2020, 39, e2000001.	1.4	4
17	Chitosan polymer electrolytes doped with a dysprosium ionic liquid. Journal of Polymer Research, 2020, 27, 1.	1.2	10
18	Magnetic ionic liquid/polymer composites: Tailoring physico-chemical properties by ionic liquid content and solvent evaporation temperature. Composites Part B: Engineering, 2019, 178, 107516.	5.9	20

#	Article	IF	CITATIONS
19	Evidences for a Null Molar Volume Contribution by Hydroxyl Groups in Ammonium Bistriflimide-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2019, 64, 4932-4945.	1.0	3
20	Simultaneous Separation of Antioxidants and Carbohydrates From Food Wastes Using Aqueous Biphasic Systems Formed by Cholinium-Derived Ionic Liquids. Frontiers in Chemistry, 2019, 7, 459.	1.8	15
21	Anomalous and Not-So-Common Behavior in Common Ionic Liquids and Ionic Liquid-Containing Systems. Frontiers in Chemistry, 2019, 7, 450.	1.8	24
22	Ionic-Liquid-Based Printable Materials for Thermochromic and Thermoresistive Applications. ACS Applied Materials & Interfaces, 2019, 11, 20316-20324.	4.0	33
23	Catalytic Cyclization of Propargyl Bromoethers via Electrogenerated Nickel(I) Tetramethylcyclam in Ionic Liquids: Water Effects. Journal of the Electrochemical Society, 2019, 166, C17-C24.	1.3	1
24	Molecular relaxation and ionic conductivity of ionic liquids confined in a poly(vinylidene fluoride) polymer matrix: Influence of anion and cation type. Polymer, 2019, 171, 58-69.	1.8	17
25	Enhancement of water solubility of poorly water-soluble drugs by new biocompatible N-acetyl amino acid N-alkyl cholinium-based ionic liquids. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 137, 227-232.	2.0	62
26	Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene) Tj ETQq0 0 0 rgB	T /Overloci	₹ 10 Tf 50 46
27	Ionic Liquids in Wonderland: From Electrostatics to Coordination Chemistry. Journal of Physical Chemistry C, 2019, 123, 5804-5811.	1.5	5
28	Ionic Liquid-Impregnated Metal–Organic Frameworks for CO ₂ /CH ₄ Separation. ACS Applied Nano Materials, 2019, 2, 7933-7950.	2.4	51
29	Enhanced photoconversion of 1,2-bis(2-methyl-1-benzothiophene-3-yl)perfluorocyclopentene in ionic liquid solutions. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 44-50.	2.0	2
30	Odd-even effect on the formation of aqueous biphasic systems formed by 1-alkyl-3-methylimidazolium chloride ionic liquids and salts. Journal of Chemical Physics, 2018, 148, .	1.2	16
31	ILs through the looking glass: electrostatics and structure probed using charge-inverted ionic liquid pairs. Faraday Discussions, 2018, 206, 203-218.	1.6	4
32	Pyridinium salts: from synthesis to reactivity and applications. Organic Chemistry Frontiers, 2018, 5, 453-493.	2.3	230
33	Negative Pressure Regimes in Ionic Liquids: Structure and Interactions in Stretched Liquids as Probed by NMR. ECS Transactions, 2018, 86, 141-147.	0.3	1
34	Molecular dynamics studies on the structure and interactions of ionic liquids containing amino-acid anions. Physical Chemistry Chemical Physics, 2018, 20, 23864-23872.	1.3	19
35	Low-field giant magneto-ionic response in polymer-based nanocomposites. Nanoscale, 2018, 10, 15747-15754.	2.8	31
36	Designing the ammonium cation to achieve a higher hydrophilicity of bistriflimide-based ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 19307-19313.	1.3	17

#	Article	IF	CITATIONS
37	Negative Pressure Regimes in Ionic Liquids: Structure and Interactions in Stretched Liquids as Probed by NMR. ECS Meeting Abstracts, 2018, , .	0.0	Ο
38	Infrared light-induced protein crystallization. Structuring of protein interfacial water and periodic self-assembly. Journal of Crystal Growth, 2017, 457, 362-368.	0.7	5
39	Structural, morphological, ionic conductivity, and thermal properties of pectin-based polymer electrolytes. Molecular Crystals and Liquid Crystals, 2017, 643, 266-273.	0.4	20
40	Effect of storage time on the ionic conductivity of chitosan-solid polymer electrolytes incorporating cyano-based ionic liquids. Electrochimica Acta, 2017, 232, 22-29.	2.6	42
41	A luminescent europium ionic liquid to improve the performance of chitosan polymer electrolytes. Electrochimica Acta, 2017, 240, 474-485.	2.6	11
42	Polymer electrolytes for electrochromic devices through solvent casting and sol-gel routes. Solar Energy Materials and Solar Cells, 2017, 169, 98-106.	3.0	28
43	Playing with ionic liquids to uncover novel polymer electrolytes. Solid State Ionics, 2017, 300, 46-52.	1.3	15
44	Polycyclic aromatic hydrocarbons as model solutes for carbon nanomaterials in ionic liquids. Physical Chemistry Chemical Physics, 2017, 19, 27694-27703.	1.3	11
45	Surfactant Fluorinated Ionic Liquids. RSC Smart Materials, 2017, , 79-102.	0.1	6
46	Electromechanical actuators based on poly(vinylidene fluoride) with [N1Â1Â1Â2(OH)][NTf2] and [C2mim] [C2SO4]. Journal of Materials Science, 2016, 51, 9490-9503.	1.7	40
47	Imidazolium-based ionic liquid type dependence of the bending response of polymer actuators. European Polymer Journal, 2016, 85, 445-451.	2.6	39
48	Protonic Ammonium Nitrate Ionic Liquids and Their Mixtures: Insights into Their Thermophysical Behavior. Journal of Physical Chemistry B, 2016, 120, 2397-2406.	1.2	39
49	Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids. Journal of Chemical Thermodynamics, 2016, 97, 354-361.	1.0	37
50	Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications. Journal of Materials Science, 2016, 51, 4442-4450.	1.7	48
51	Ionic Liquids for the Electroreductive Radical Cyclization of Unsaturated Bromo Derivatives Catalyzed by Nickel(II) Complexes. Journal of the Electrochemical Society, 2016, 163, G21-G25.	1.3	5
52	lonic liquid-functionalized crystals of barium sulfate: A hybrid organic–inorganic material with tuned hydrophilicity and solid–liquid behavior. Materials Chemistry and Physics, 2015, 160, 308-314.	2.0	7
53	Ionic-Liquid-Functionalized Mineral Particles for Protein Crystallization. Crystal Growth and Design, 2015, 15, 2994-3003.	1.4	8
54	A thermophysical and structural characterization of ionic liquids with alkyl and perfluoroalkyl side chains. RSC Advances, 2015, 5, 65337-65350.	1.7	63

#	Article	IF	CITATIONS
55	Polymer electrolyte based on DNA and N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide. Journal of Electroanalytical Chemistry, 2015, 748, 70-75.	1.9	11
56	Viscosity minima in binary mixtures of ionic liquids + molecular solvents. Physical Chemistry Chemical Physics, 2015, 17, 13480-13494.	1.3	21
57	Gellan gum—Ionic liquid membranes for electrochromic device application. Solid State Ionics, 2015, 274, 64-70.	1.3	26
58	A biocompatible stepping stone for the removal of emerging contaminants. Separation and Purification Technology, 2015, 153, 91-98.	3.9	38
59	Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes properties. Electrochimica Acta, 2015, 184, 171-178.	2.6	16
60	High performance electromechanical actuators based on ionic liquid/poly(vinylidene fluoride). Polymer Testing, 2015, 48, 199-205.	2.3	51
61	Organocatalyzed One-Step Synthesis of Functionalized <i>N-</i> Alkyl-Pyridinium Salts from Biomass Derived 5-Hydroxymethylfurfural. Organic Letters, 2015, 17, 5244-5247.	2.4	33
62	Electrosynthesis of Heterocyclic Compounds by Radical Cyclization in Environmentally Friendly Media. ECS Transactions, 2015, 66, 1-5.	0.3	0
63	Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene) Tj ETQq1 1 0.784314	rgβT /Ov 2.6	erlock 10 Tf
64	Effect of Ionic Liquid Anion Type in the Performance of Solid Polymer Electrolytes Based on Poly(Vinylidene fluorideâ€ŧrifluoroethylene). Electroanalysis, 2015, 27, 457-464.	1.5	27
65	On the hunt for truly biocompatible ionic liquids for lipase-catalyzed reactions. RSC Advances, 2015, 5, 3386-3389.	1.7	54
66	Protein crystal nucleation induced by ionic liquid-functionalized mineral particles. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s50-s51.	0.0	0
67	The Study of Indirect Electroreductive Cyclization of Propargyl Derivatives Using [Ni(tmc)]Br2 as Catalyst in Ionic Liquids. ECS Transactions, 2014, 61, 51-55.	0.3	0
68	Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations. Journal of Chemical Physics, 2014, 140, 064505.	1.2	127
69	Chitosan and Ionic Liquid Based Solid Polymer Electrolytes: The Anion Alkyl Chain Length Effect. ECS Transactions, 2014, 61, 51-59.	0.3	6
70	Spontaneous emulsification in ionic liquid/water systems and its use for templating of solids. Soft Matter, 2014, 10, 3798-3805.	1.2	13
71	Generating Ionic Liquids from Ionic Solids: An Investigation of the Melting Behavior of Binary Mixtures of Ionic Liquids. Crystal Growth and Design, 2014, 14, 4270-4277.	1.4	38
72	Structural–functional evaluation of ionic liquid libraries for the design of co-solvents in lipase-catalysed reactions. Green Chemistry, 2014, 16, 4520-4523.	4.6	40

#	Article	IF	CITATIONS
73	Ionic liquids for solid-state electrolytes and electrosynthesis. Journal of Electroanalytical Chemistry, 2014, 714-715, 63-69.	1.9	20
74	Using ¹²⁹ Xe NMR to Probe the Structure of Ionic Liquids. Journal of Physical Chemistry Letters, 2013, 4, 2758-2762.	2.1	26
75	Direct transformation of 5-hydroxymethylfurfural to the building blocks 2,5-dihydroxymethylfurfural (DHMF) and 5-hydroxymethyl furanoic acid (HMFA) via Cannizzaro reaction. Green Chemistry, 2013, 15, 2849.	4.6	122
76	Development of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene) and the [N1 1 1 2(OH)][NTf2] ionic liquid for energy storage applications. Solid State Ionics, 2013, 253, 143-150.	1.3	32
77	Shifts in the temperature of maximum density (TMD) of ionic liquid aqueous solutions. Physical Chemistry Chemical Physics, 2013, 15, 10960.	1.3	20
78	Solubility of non-aromatic hexafluorophosphate-based salts and ionic liquids in water determined by electrical conductivity. Fluid Phase Equilibria, 2013, 358, 50-55.	1.4	22
79	Unusual LCST-type behaviour found in binary mixtures of choline-based ionic liquids with ethers. RSC Advances, 2013, 3, 10262.	1.7	24
80	Probing the self-aggregation of ionic liquids in aqueous solutions using density and speed of sound data. Journal of Chemical Thermodynamics, 2013, 59, 43-48.	1.0	16
81	Thermophysical and magnetic studies of two paramagnetic liquid salts: [C4mim][FeCl4] and [P66614][FeCl4]. Fluid Phase Equilibria, 2013, 350, 43-50.	1.4	41
82	Electrochemical Applications of Electrolytes based on Ionic Liquids. ECS Transactions, 2013, 45, 235-244.	0.3	5
83	Pesticide Removal from Aqueous Solutions by Adding Salting Out Agents. International Journal of Molecular Sciences, 2013, 14, 20954-20965.	1.8	16
84	Probing Ionic Liquid Aqueous Solutions Using Temperature of Maximum Density Isotope Effects. Molecules, 2013, 18, 3703-3711.	1.7	3
85	Investigation of polymer electrolyte based on agar and ionic liquids. EXPRESS Polymer Letters, 2012, 6, 1007-1016.	1.1	77
86	Inorganic salts in purely ionic liquid media: the development of high ionicity ionic liquids (HIILs). Chemical Communications, 2012, 48, 3656.	2.2	91
87	Hollow calcite rhombohedra at ionic liquid-stabilized bubbles. CrystEngComm, 2012, 14, 5723.	1.3	3
88	Liquid–Liquid Equilibrium of Cholinium-Derived Bistriflimide Ionic Liquids with Water and Octanol. Journal of Physical Chemistry B, 2012, 116, 9186-9195.	1.2	34
89	Solubility of inorganic salts in pure ionic liquids. Journal of Chemical Thermodynamics, 2012, 55, 29-36.	1.0	70
90	Characterization of flexible DNA films. Electrochemistry Communications, 2012, 22, 189-192.	2.3	15

#	Article	IF	CITATIONS
91	Novel polymer electrolytes based on gelatin and ionic liquids. Optical Materials, 2012, 35, 187-195.	1.7	51
92	Hofmeister effects of ionic liquids in protein crystallization: Direct and water-mediated interactions. CrystEngComm, 2012, 14, 4912.	1.3	41
93	Density, Thermal Expansion and Viscosity of Choliniumâ€Derived Ionic Liquids. ChemPhysChem, 2012, 13, 1902-1909.	1.0	83
94	Synthesis and electrochemical characterization of aPEO-based polymer electrolytes. Journal of Solid State Electrochemistry, 2012, 16, 1623-1629.	1.2	3
95	Phosphonium-based ionic liquids as modifiers for biomedical grade poly(vinyl chloride). Acta Biomaterialia, 2012, 8, 1366-1379.	4.1	62
96	lonic liquids in separations of azeotropic systems – A review. Journal of Chemical Thermodynamics, 2012, 46, 2-28.	1.0	410
97	On the Use of Ionic Liquids To Tune Crystallization. Crystal Growth and Design, 2011, 11, 684-691.	1.4	18
98	High-Accuracy Vapor Pressure Data of the Extended [C _{<i>n</i>} C ₁ im][Ntf ₂] Ionic Liquid Series: Trend Changes and Structural Shifts. Journal of Physical Chemistry B, 2011, 115, 10919-10926.	1.2	199
99	Densities and Viscosities of 1-Ethyl-3-methylimidazolium <i>n</i> -Alkyl Sulfates. Journal of Chemical & Engineering Data, 2011, 56, 3433-3441.	1.0	93
100	Ionic liquid-based aqueous biphasic system for lipase extraction. Green Chemistry, 2011, 13, 390-396.	4.6	120
101	Alkylsulfate-based ionic liquids to separate azeotropic mixtures. Fluid Phase Equilibria, 2010, 291, 13-17.	1.4	36
102	High-temperature surface tension and density measurements of 1-alkyl-3-methylimidazolium bistriflamide ionic liquids. Fluid Phase Equilibria, 2010, 294, 131-138.	1.4	145
103	Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids [C4mim][NTf2], [C4mim][dca], [C2mim][EtOSO3] and [Aliquat][dca]. Fluid Phase Equilibria, 2010, 294, 157-179.	1.4	171
104	Alkylsulfate-based ionic liquids to separate azeotropic mixtures. Fluid Phase Equilibria, 2010, 294, 49-53.	1.4	37
105	New Insight into Phase Equilibria Involving Imidazolium Bistriflamide Ionic Liquids and Their Mixtures with Alcohols and Water. Journal of Physical Chemistry B, 2010, 114, 8978-8985.	1.2	15
106	Volatility of Aprotic Ionic Liquids — A Review. Journal of Chemical & Engineering Data, 2010, 55, 3-12.	1.0	294
107	Phase Equilibria of Haloalkanes Dissolved in Ethylsulfate- or Ethylsulfonate-Based Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 7329-7337.	1.2	24
108	The Nature of Protic Ionic Liquids in the Gas Phase Revisited: Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Study of 1,1,3,3-Tetramethylguanidinium Chloride. Journal of Physical Chemistry B, 2010, 114, 8905-8909.	1.2	30

#	Article	IF	CITATIONS
109	Rationalizing the Diverse Solidâ^'Liquid Equilibria of Binary Mixtures of Benzene and Its Fluorinated Derivatives. Journal of Physical Chemistry B, 2010, 114, 12589-12596.	1.2	3
110	Effect of temperature on the physical properties of two ionic liquids. Journal of Chemical Thermodynamics, 2009, 41, 1419-1423.	1.0	111
111	Bridging the Gap between Ionic Liquids and Molten Salts: Group 1 Metal Salts of the Bistriflamide Anion in the Gas Phase. Journal of Physical Chemistry B, 2009, 113, 3491-3498.	1.2	27
112	Pressureâ^'Densityâ^'Temperature (<i>pâ^'</i> Ï <i>â^'T</i>) Surface of [C ₆ mim][NTf ₂]. Journal of Chemical & Engineering Data, 2008, 53, 867-870.	1.0	69
113	Accounting for the Unique, Doubly Dual Nature of Ionic Liquids from a Molecular Thermodynamic and Modeling Standpoint. Accounts of Chemical Research, 2007, 40, 1114-1121.	7.6	213
114	Ionic Liquids:Â First Direct Determination of their Cohesive Energy. Journal of the American Chemical Society, 2007, 129, 284-285.	6.6	295
115	The Nature of Ionic Liquids in the Gas Phase. Journal of Physical Chemistry A, 2007, 111, 6176-6182.	1.1	201
116	Fluid-Phase Behavior of {1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl) Imide, [C6mim][NTf2], + C2â^C8n-Alcohol} Mixtures:  Liquidâ^Liquid Equilibrium and Excess Volumes‡. Journal of Chemical & Engineering Data, 2006, 51, 2215-2221.	1.0	104
117	Changing from an unusual high-temperature demixing to a UCST-type in mixtures of 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide and arenes. Green Chemistry, 2006, 8, 262.	4.6	124
118	Density, Speed of Sound, and Derived Thermodynamic Properties of Ionic Liquids over an Extended Pressure Range. 4. [C3mim][NTf2] and [C5mim][NTf2]. Journal of Chemical & Engineering Data, 2006, 51, 2009-2015.	1.0	130
119	Densities and Derived Thermodynamic Properties of Ionic Liquids. 3. Phosphonium-Based Ionic Liquids over an Extended Pressure Range. Journal of Chemical & Engineering Data, 2006, 51, 237-242.	1.0	179
120	Acoustic Determination of Thermophysical Properties and Critical Parameters for R404A and Critical Line of xCO2 + (1 â^ x)R404A. Journal of Chemical & Engineering Data, 2006, 51, 1148-1155.	1.0	6
121	Acoustic Determination of Thermophysical Properties and Critical Parameters for R410A and Critical Line ofxCO2+ (1 â^'x)R410A. Journal of Chemical & Engineering Data, 2006, 51, 1906-1914.	1.0	3
122	Acoustic Determination of Thermophysical Properties and Critical Parameters for the Mixture (51 wt) Tj ETQq0 0 Chemical & Engineering Data, 2006, 51, 2161-2169.	0 rgBT /Ov 1.0	verlock 10 Tf 2
123	The distillation and volatility of ionic liquids. Nature, 2006, 439, 831-834.	13.7	1,926
124	Phase Behavior and Thermodynamic Properties of Ionic Liquids, Ionic Liquid Mixtures, and Ionic Liquid Solutions. ChemInform, 2006, 37, no.	0.1	0
125	Thermophysical and thermodynamic properties of ionic liquids over an extended pressure range: [bmim][NTf2] and [hmim][NTf2]. Journal of Chemical Thermodynamics, 2005, 37, 888-899.	1.0	287
126	On the Critical Temperature, Normal Boiling Point, and Vapor Pressure of Ionic Liquids. Journal of Physical Chemistry B, 2005, 109, 6040-6043.	1.2	475

#	Article	IF	CITATIONS
127	Deuterium isotope differences in 2-propanone, (CH3)2CO/(CD3)2CO: a high-pressure sound-speed, density, and heat capacities study. Journal of Chemical Thermodynamics, 2005, 37, 671-683.	1.0	8
128	Deviations from Ideality in Mixtures of Two Ionic Liquids Containing a Common Ion. Journal of Physical Chemistry B, 2005, 109, 3519-3525.	1.2	246
129	Evidence for Lower Critical Solution Behavior in Ionic Liquid Solutions. Journal of the American Chemical Society, 2005, 127, 6542-6543.	6.6	128
130	Phase Behavior and Thermodynamic Properties of Ionic Liquids, Ionic Liquid Mixtures, and Ionic Liquid Solutions. ACS Symposium Series, 2005, , 270-291.	0.5	29
131	Thermophysical and Thermodynamic Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Hexafluorophosphate over an Extended Pressure Range. Journal of Chemical & Engineering Data, 2005, 50, 997-1008.	1.0	201
132	A novel non-intrusive microcell for sound-speed measurements in liquids. Speed of sound and thermodynamic properties of 2-propanone at pressures up to 160 MPa. Journal of Chemical Thermodynamics, 2004, 36, 211-222.	1.0	43
133	A detailed thermodynamic analysis of [C4mim][BF4] + water as a case study to model ionic liquid aqueous solutions. Green Chemistry, 2004, 6, 369-381.	4.6	334
134	Supercritical Carbon Dioxide-Induced Phase Changes in (Ionic Liquid, Water and Ethanol Mixture) Solutions: Application to Biphasic Catalysis ChemPhysChem, 2003, 4, 520-522.	1.0	45
135	Pressure, Isotope, and Water Co-solvent Effects in Liquidâ^'Liquid Equilibria of (Ionic Liquid + Alcohol) Systems. Journal of Physical Chemistry B, 2003, 107, 12797-12807.	1.2	158
136	Phase behaviour of room temperature ionic liquid solutions: an unusually large co-solvent effect in (water + ethanol). Physical Chemistry Chemical Physics, 2002, 4, 1701-1703.	1.3	221
137	Natural convection heat transfer in horizontal eccentric elliptic annuli containing saturated porous media. International Journal of Heat and Mass Transfer, 2000, 43, 4367-4379.	2.5	51
138	Ultrasonic Speed of Sound and Derived Thermodynamic Properties of Liquid 1,1,1,2,3,3,3-Heptafluoropropane (HFC227ea) from 248 K to 333 K and Pressures up to 65 MPa. Journal of Chemical & Engineering Data, 2000, 45, 496-501.	1.0	17