Ioannis Sechopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2210533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists. Journal of the National Cancer Institute, 2019, 111, 916-922.	6.3	372
2	Detection of Breast Cancer with Mammography: Effect of an Artificial Intelligence Support System. Radiology, 2019, 290, 305-314.	7.3	347
3	A review of breast tomosynthesis. Part I. The image acquisition process. Medical Physics, 2013, 40, 014301.	3.0	326
4	Review of radiation dose estimates in digital breast tomosynthesis relative to those in two-view full-field digital mammography. Breast, 2015, 24, 93-99.	2.2	186
5	RECORDS: improved Reporting of montE CarlO RaDiation transport Studies: Report of the <scp>AAPM</scp> Research Committee Task Group 268. Medical Physics, 2018, 45, e1-e5.	3.0	178
6	A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications. Medical Physics, 2013, 40, 014302.	3.0	161
7	Clinical Digital Breast Tomosynthesis System: Dosimetric Characterization. Radiology, 2012, 263, 35-42.	7.3	140
8	Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study. European Radiology, 2019, 29, 4825-4832.	4.5	129
9	Computation of the glandular radiation dose in digital tomosynthesis of the breast. Medical Physics, 2006, 34, 221-232.	3.0	124
10	Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art. Seminars in Cancer Biology, 2021, 72, 214-225.	9.6	121
11	Optimization of the acquisition geometry in digital tomosynthesis of the breast. Medical Physics, 2009, 36, 1199-1207.	3.0	117
12	Imaging Nanoprobe for Prediction of Outcome of Nanoparticle Chemotherapy by Using Mammography. Radiology, 2009, 250, 398-406.	7.3	96
13	Dosimetric characterization of a dedicated breast computed tomography clinical prototype. Medical Physics, 2010, 37, 4110-4120.	3.0	85
14	Radiation Dose to Organs and Tissues from Mammography: Monte Carlo and Phantom Study. Radiology, 2008, 246, 434-443.	7.3	78
15	Scatter radiation in digital tomosynthesis of the breast. Medical Physics, 2007, 34, 564-576.	3.0	76
16	Monte Carlo reference data sets for imaging research: Executive summary of the report of AAPM Research Committee Task Group 195. Medical Physics, 2015, 42, 5679-5691.	3.0	76
17	Dosimetry in x-ray-based breast imaging. Physics in Medicine and Biology, 2016, 61, R271-R304.	3.0	69
18	Characterization of the homogeneous tissue mixture approximation in breast imaging dosimetry. Medical Physics, 2012, 39, 5050-5059.	3.0	68

IOANNIS SECHOPOULOS

#	Article	IF	CITATIONS
19	Tumor Vascular Permeability to a Nanoprobe Correlates to Tumor-Specific Expression Levels of Angiogenic Markers. PLoS ONE, 2009, 4, e5843.	2.5	64
20	Multifunctional nanocarriers for mammographic quantification of tumor dosing and prognosis of breast cancer therapy. Biomaterials, 2008, 29, 4815-4822.	11.4	58
21	Physical evaluation of an ultra-high-resolution CT scanner. European Radiology, 2020, 30, 2552-2560.	4.5	53
22	Cupping artifact correction and automated classification for highâ€resolution dedicated breast CT images. Medical Physics, 2012, 39, 6397-6406.	3.0	49
23	Deep learning-based segmentation of breast masses in dedicated breast CT imaging: Radiomic feature stability between radiologists and artificial intelligence. Computers in Biology and Medicine, 2020, 118, 103629.	7.0	48
24	Stand-alone artificial intelligence - The future of breast cancer screening?. Breast, 2020, 49, 254-260.	2.2	47
25	Radiation dosimetry in digital breast tomosynthesis: Report of AAPM Tomosynthesis Subcommittee Task Group 223. Medical Physics, 2014, 41, 091501.	3.0	43
26	Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images. Computer Methods and Programs in Biomedicine, 2020, 191, 105387.	4.7	41
27	Influence of breast compression pressure on the performance of population-based mammography screening. Breast Cancer Research, 2017, 19, 126.	5.0	39
28	Deep learning–based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms. European Radiology, 2021, 31, 5498-5506.	4.5	37
29	Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study. European Radiology, 2021, 31, 8682-8691.	4.5	37
30	Stereoscopic Digital Mammography: Improved Specificity and Reduced Rate of Recall in a Prospective Clinical Trial. Radiology, 2013, 266, 81-88.	7.3	36
31	lodine Maps from Subtraction CT or Dual-Energy CT to Detect Pulmonary Emboli with CT Angiography: A Multiple-Observer Study. Radiology, 2019, 292, 197-205.	7.3	33
32	Xâ€ray scatter correction method for dedicated breast computed tomography. Medical Physics, 2012, 39, 2896-2903.	3.0	29
33	Progression of Medial Arterial Calcification in CKD. Kidney International Reports, 2018, 3, 1328-1335.	0.8	28
34	Glandular radiation dose in tomosynthesis of the breast using tungsten targets. Journal of Applied Clinical Medical Physics, 2008, 9, 161-171.	1.9	27
35	An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images. Medical Physics, 2018, 45, 2542-2559.	3.0	27
36	Impact of Artificial Intelligence Decision Support Using Deep Learning on Breast Cancer Screening Interpretation with Single-View Wide-Angle Digital Breast Tomosynthesis. Radiology, 2021, 300, 529-536.	7.3	27

IOANNIS SECHOPOULOS

#	Article	IF	CITATIONS
37	New reconstruction algorithm for digital breast tomosynthesis: better image quality for humans and computers. Acta Radiologica, 2018, 59, 1051-1059.	1.1	26
38	Interval Cancer Detection Using a Neural Network and Breast Density in Women with Negative Screening Mammograms. Radiology, 2022, 303, 269-275.	7.3	26
39	Numerical Algorithms for Polyenergetic Digital Breast Tomosynthesis Reconstruction. SIAM Journal on Imaging Sciences, 2010, 3, 133-152.	2.2	25
40	A Monte Carlo model for mean glandular dose evaluation in spot compression mammography. Medical Physics, 2017, 44, 3848-3860.	3.0	24
41	Homogeneous vs. patient specific breast models for Monte Carlo evaluation of mean glandular dose in mammography. Physica Medica, 2018, 51, 56-63.	0.7	24
42	Image quality comparison between a phase-contrast synchrotron radiation breast CT and a clinical breast CT: a phantom based study. Scientific Reports, 2019, 9, 17778.	3.3	24
43	Monte Carlo and Phantom Study of the Radiation Dose to the Body from Dedicated CT of the Breast. Radiology, 2008, 247, 98-105.	7.3	23
44	One-view digital breast tomosynthesis as a stand-alone modality for breast cancer detection: do we need more?. European Radiology, 2018, 28, 1938-1948.	4.5	23
45	Imaging of pulmonary perfusion using subtraction CT angiography is feasible in clinical practice. European Radiology, 2019, 29, 1408-1414.	4.5	23
46	Automatic tissue classification for high-resolution breast CT images based on bilateral filtering. , 2011, 7962, 79623H.		21
47	Mammography and the Risk of Thyroid Cancer. American Journal of Roentgenology, 2012, 198, 705-707.	2.2	21
48	Monte Carlo evaluation of glandular dose in cone-beam X-ray computed tomography dedicated to the breast: Homogeneous and heterogeneous breast models. Physica Medica, 2018, 51, 99-107.	0.7	21
49	A softwareâ€based xâ€ŧay scatter correction method for breast tomosynthesis. Medical Physics, 2011, 38, 6643-6653.	3.0	20
50	Can Breast Compression Be Reduced in Digital Mammography and Breast Tomosynthesis?. American Journal of Roentgenology, 2017, 209, W322-W332.	2.2	20
51	The compressed breast during mammography and breast tomosynthesis: <i>in vivo</i> shape characterization and modeling. Physics in Medicine and Biology, 2017, 62, 6920-6937.	3.0	20
52	Detection of Simulated Microcalcifications in a Phantom with Digital Mammography: Effect of Pixel Size. Radiology, 2007, 244, 130-137.	7.3	19
53	Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation. Medical Image Analysis, 2021, 71, 102061.	11.6	19
54	Comparing dual energy CT and subtraction CT on a phantom: which one provides the best contrast in iodine maps for sub-centimetre details?. European Radiology, 2018, 28, 5051-5059.	4.5	18

IOANNIS SECHOPOULOS

#	Article	IF	CITATIONS
55	Theoretical analysis of high-resolution digital mammography. Physics in Medicine and Biology, 2006, 51, 3041-3055.	3.0	16
56	Xâ€ray scatter correction in breast tomosynthesis with a precomputed scatter map library. Medical Physics, 2014, 41, 031912.	3.0	15
57	A model observer study using acquired mammographic images of an anthropomorphic breast phantom. Medical Physics, 2018, 45, 655-665.	3.0	15
58	Patientâ€derived heterogeneous breast phantoms for advanced dosimetry in mammography and tomosynthesis. Medical Physics, 2022, 49, 5423-5438.	3.0	15
59	Breast tissue classification in digital tomosynthesis images based on global gradient minimization and texture features. Proceedings of SPIE, 2014, 9034, 90341V.	0.8	14
60	Internal breast dosimetry in mammography: Experimental methods and Monte Carlo validation with a monoenergetic xâ€ray beam. Medical Physics, 2018, 45, 1724-1737.	3.0	14
61	BreastSimulator: A software platform for breast x-ray imaging research. Journal of Biomedical Graphics and Computing, 2012, 2, .	0.2	13
62	Power spectrum analysis of the xâ€ray scatter signal in mammography and breast tomosynthesis projections. Medical Physics, 2013, 40, 101905.	3.0	13
63	Internal breast dosimetry in mammography: Monte Carlo validation in homogeneous and anthropomorphic breast phantoms with a clinical mammography system. Medical Physics, 2018, 45, 3950-3961.	3.0	13
64	Fibroglandular tissue distribution in the breast during mammography and tomosynthesis based on breast CT data: A patientâ€based characterization of the breast parenchyma. Medical Physics, 2021, 48, 1436-1447.	3.0	13
65	Multiâ€marker quantitative radiomics for mass characterization in dedicated breast CT imaging. Medical Physics, 2021, 48, 313-328.	3.0	12
66	The DICOM Radiation Dose Structured Report: What It Is and What It Is Not. Journal of the American College of Radiology, 2015, 12, 712-713.	1.8	11
67	Development of 3D patient-based super-resolution digital breast phantoms using machine learning. Physics in Medicine and Biology, 2018, 63, 225017.	3.0	11
68	Measurement of the useful field of view for single slices of different imaging modalities and targets. Journal of Medical Imaging, 2020, 7, 1.	1.5	10
69	Objective models of compressed breast shapes undergoing mammography. Medical Physics, 2013, 40, 031902.	3.0	9
70	Patientâ€based 4D digital breast phantom for perfusion contrastâ€enhanced breast <scp>CT</scp> imaging. Medical Physics, 2018, 45, 4448-4460.	3.0	9
71	Towards 4D dedicated breast CT perfusion imaging of cancer: development and validation of computer simulated images. Physics in Medicine and Biology, 2019, 64, 245004.	3.0	9
72	How does image quality affect radiologists' perceived ability for image interpretation and lesion detection in digital mammography?. European Radiology, 2021, 31, 5335-5343.	4.5	9

#	Article	IF	CITATIONS
73	Comparison of simultaneous multi-slice single-shot DWI to readout-segmented DWI for evaluation of breast lesions at 3T MRI. European Journal of Radiology, 2021, 138, 109626.	2.6	9
74	Realistic compressed breast phantoms for medical physics applications. , 2020, , .		9
75	Improvements of an objective model of compressed breasts undergoing mammography: Generation and characterization of breast shapes. Medical Physics, 2017, 44, 2161-2172.	3.0	8
76	Validation of a method to simulate the acquisition of mammographic images with different techniques. , 2019, , .		8
77	Iterative Breast Tomosynthesis Image Reconstruction. SIAM Journal of Scientific Computing, 2013, 35, S192-S208.	2.8	7
78	Flat-panel conebeam CT in the clinic: history and current state. Journal of Medical Imaging, 2021, 8, 052115.	1.5	7
79	Image Quality of Iodine Maps for Pulmonary Embolism: A Comparison of Subtraction CT and Dual-Energy CT. American Journal of Roentgenology, 2019, 212, 1253-1259.	2.2	6
80	Can a channelized Hotelling observer assess image quality in acquired mammographic images of an anthropomorphic breast phantom including image processing?. Medical Physics, 2019, 46, 714-725.	3.0	6
81	Monte Carlo study on optimal breast voxel resolution for dosimetry estimates in digital breast tomosynthesis. Physics in Medicine and Biology, 2019, 64, 015003.	3.0	6
82	X-ray scatter correction method for dedicated breast computed tomography: improvements and initial patient testing. Physics in Medicine and Biology, 2016, 61, 1116-1135.	3.0	5
83	A systematic review on the use of the breast lesion excision system in breast disease. Insights Into Imaging, 2019, 10, 49.	3.4	5
84	Accuracy of registration algorithms in subtraction <scp>CT</scp> of the lungs: A digital phantom study. Medical Physics, 2019, 46, 2264-2274.	3.0	5
85	Computer-aided diagnosis of masses in breast computed tomography imaging: deep learning model with combined handcrafted and convolutional radiomic features. Journal of Medical Imaging, 2021, 8, 024501.	1.5	5
86	Validation of a candidate instrument to assess image quality in digital mammography using ROC analysis. European Journal of Radiology, 2021, 139, 109686.	2.6	5
87	Signal template generation from acquired mammographic images for the non-prewhitening model observer with eye-filter. , 2017, , .		5
88	Reliability of MRI tumor size measurements for minimal invasive treatment selection in small breast cancers. European Journal of Surgical Oncology, 2020, 46, 1463-1470.	1.0	4
89	Reference dataset for benchmarking fetal doses derived from Monte Carlo simulations of CT exams. Medical Physics, 2021, 48, 523-532.	3.0	4
90	Visualization of the Nipple in Profile: Does It Really Affect Selected Outcomes in Organized Mammographic Screening?. Journal of Breast Imaging, 2021, 3, 427-437.	1.3	4

#	Article	IF	CITATIONS
91	A minimum spanning forest based classification method for dedicated breast CT images. Medical Physics, 2015, 42, 6190-6202.	3.0	3
92	Comparison of breast cancer detection and depiction between planar and rotating synthetic mammography generated from breast tomosynthesis. European Journal of Radiology, 2018, 108, 78-83.	2.6	3
93	Validation of a mammographic image quality modification algorithm using 3D-printed breast phantoms. Journal of Medical Imaging, 2021, 8, 033502.	1.5	3
94	Diffusion weighted imaging for evaluation of breast lesions: Comparison between high b-value single-shot and routine readout-segmented sequences at 3ÂT. Magnetic Resonance Imaging, 2021, 84, 35-40.	1.8	3
95	Patient evaluation of breast shape-corrected tomosynthesis reconstruction. , 2019, , .		3
96	Monte Carlo dose evaluation of different fibroglandular tissue distribution in breast imaging. , 2020, , .		3
97	Comparison of two-view digital breast tomosynthesis to three-view digital mammography in a simulated screening setting. Acta Radiologica, 2019, 60, 1094-1101.	1.1	2
98	Pulmonary nodule enhancement in subtraction CT and dual-energy CT: A comparison study. European Journal of Radiology, 2021, 134, 109443.	2.6	2
99	Mammography dose estimates do not reflect any specific patient's breast dose. European Journal of Radiology, 2020, 131, 109216.	2.6	2
100	Dose reduction in breast CT by spectrum switching. , 2018, , .		2
101	The regression detectability index RDI for mammography images of breast phantoms with calcification-like objects and anatomical background. Physics in Medicine and Biology, 2021, 66, .	3.0	2
102	Multireader image quality evaluation of dynamic myocardial computed tomography perfusion imaging with a novel four-dimensional noise reduction filter. Acta Radiologica, 2023, 64, 999-1006.	1.1	2
103	Development and content validity evaluation of a candidate instrument to assess image quality in digital mammography: A mixed-method study. European Journal of Radiology, 2021, 134, 109464.	2.6	1
104	Signal template generation from acquired images for model observer-based image quality analysis in mammography. Journal of Medical Imaging, 2018, 5, 1.	1.5	1
105	Automatic estimation of glandular tissue loss due to limited reconstruction voxel size in tomographic images of the breast. , 2018, , .		1
106	New difference of Gaussian channel-sets for the channelized Hotelling observer?. , 2019, , .		1
107	Breast parenchyma analysis and classification for breast masses detection using texture feature descriptors and neural networks in dedicated breast CT images. , 2019, , .		1
108	Deep learning scatter estimation for breast tomosynthesis based on a realistic compressed breast shape model in the CC view. , 2022, , .		1

7

#	Article	IF	CITATIONS
109	Teaching Radiologic Physics to Diagnostic Radiology Residents: How We Do It. Journal of the American College of Radiology, 2014, 11, 1093-1094.	1.8	0
110	RECORDS: improved Reporting of montE CarlO RaDiation transport Studies. International Journal of Radiation Oncology Biology Physics, 2018, 101, 792-793.	0.8	0
111	lodine quantification in limited angle tomography. Medical Physics, 2020, 47, 4906-4916.	3.0	0
112	Digital Breast Tomosynthesis Screening: Better But Still Not Good Enough for All Women. Radiology, 2020, 297, 532-533.	7.3	0
113	Evidence for sequential reading effects in screening mammography. Journal of Vision, 2021, 21, 2212.	0.3	0
114	Optimization of the difference-of-Gaussian channel sets for the channelized Hotelling observer. Journal of Medical Imaging, 2019, 6, 1.	1.5	0
115	New abstract guidelines for <i>Medical Physics</i> . Medical Physics, 2021, 48, 5583-5583.	3.0	0
116	Evaluation of reader performance during interpretation of breast cancer screening: the Recall and detection Of breast Cancer in Screening (ROCS) trial study design. European Radiology, 2022, , .	4.5	0