
Olga A Lodochnikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2209937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of ms-aryl substitution on the structure and spectral properties of new CH(Ar)-bis(BODIPY) luminophores. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120393.	3.9	6
2	Design, Spectral Characteristics, Photostability, and Possibilities for Practical Application of BODIPY FL-Labeled Thioterpenoid. Bioengineering, 2022, 9, 210.	3.5	3
3	The second example of doubly enantiophobic behavior during crystallization: a detailed crystallographic, thermochemical and spectroscopic study. CrystEngComm, 2021, 23, 3907-3918.	2.6	8
4	Chirality, Gelation Ability and Crystal Structure: Together or Apart? Alkyl Phenyl Ethers of Glycerol as Simple LMWGs. Symmetry, 2021, 13, 732.	2.2	4
5	From classical to supramolecular dynamic stereochemistry: Double crystallizationâ€induced diastereomerization of thiazine sulfonamide. Chirality, 2021, 33, 409-420.	2.6	5
6	Design, Spectral Characteristics, and Possibilities for Practical Application of BODIPY FL-Labeled Monoterpenoid. ACS Applied Bio Materials, 2021, 4, 6227-6235.	4.6	16
7	Isobornanyl sulfoxides and isobornanyl sulfone: Physicochemical characteristics and the features of crystal structure. Journal of Molecular Structure, 2021, 1239, 130491.	3.6	5
8	Reactions of derivatives of phosphorylacetic acid hydrazides with 3,5-di-tert-butyl-4-hydroxybenzyl acetate. Synthetic Communications, 2020, 50, 41-47.	2.1	2
9	Spectroscopic and In Vitro Investigations of Boron(III) Complex with Meso-4-Methoxycarbonylpropylsubstituted Dipyrromethene for Fluorescence Bioimaging Applications. Molecules, 2020, 25, 4541.	3.8	11
10	Meso-substituted-BODIPY based fluorescent biomarker: Spectral characteristics, photostability and possibilities for practical application. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112783.	3.9	19
11	Facile Access to Optically Active 2,6â€Dialkylâ€1,5â€Diazacyclooctanes. Chemistry - an Asian Journal, 2019, 14, 4048-4054.	3.3	4
12	Intermolecular <i>head-to-head</i> interaction of carbonyl groups in bicyclic hydrogen-bonded synthon based on β-hydroxy ketones. CrystEngComm, 2019, 21, 1587-1599.	2.6	16
13	"Lpâ∢̄synthon―interaction as a reason for the strong amplification of synthon-forming hydrogen bonds. CrystEngComm, 2019, 21, 1499-1511.	2.6	3
14	Co-Ligand Induced Chiral Recognition of N-Thiophosphorylated Thioureas in Crystalline Ni(II) Complexes. Crystal Growth and Design, 2019, 19, 4044-4056.	3.0	6
15	Unraveling the Molecular Mechanism of Selective Antimicrobial Activity of 2(5H)-Furanone Derivative against Staphylococcus aureus. International Journal of Molecular Sciences, 2019, 20, 694.	4.1	23
16	Ethene-1,1,2,2-tetracarbonitrile and Methanol in the Methylating Reaction of Tertiary Amines to the Quaternary Ammonium Compounds of 1,1-Dicyano-2-methoxy-2-oxoethane-1-ide. Synlett, 2019, 30, 173-177.	1.8	0
17	"Doubly enantiophobic―behavior during crystallization of racemic 1,5-dihydro-2 <i>H</i> -pyrrol-2-one thioether. CrystEngComm, 2018, 20, 3218-3227.	2.6	14
18	Synthesis and Antifungal Activity of <i>β</i> -Hydroxysulfides of 1,3-Dioxepane Series. Journal of Chemistry, 2018, 2018, 1-14.	1.9	2

Olga A Lodochnikova

#	Article	IF	CITATIONS
19	Sulfur-Containing Monoterpenoids as Potential Antithrombotic Drugs: Research in the Molecular Mechanism of Coagulation Activity Using Pinanyl Sulfoxide as an Example. Frontiers in Pharmacology, 2018, 9, 116.	3.5	16
20	Novel enantiopure monophospholes: synthesis, spatial and electronic structure, photophysical characteristics and conjugation effects. Dalton Transactions, 2018, 47, 11521-11529.	3.3	11
21	Extraordinary behavior of β-hydroxy sulfoxides and sulfone of pinane series. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 187-191.	1.6	4
22	Development of Approaches to the Study of the Interaction of Biologically Active Thioterpenoids with Model Membranes. BioNanoScience, 2017, 7, 600-607.	3.5	9
23	Structural aspects of partial solid solution formation: two crystalline modifications of a chiral derivative of 1,5-dihydro-2 <i>H</i> -pyrrol-2-one under consideration. CrystEngComm, 2017, 19, 7277-7286.	2.6	18
24	S=o…s=o Interactions as a Driving Force for Low-Temperature Conformational Rearrangement of Stable H-Bonding {S(O)-Ch2-Ch2-OH···}2 Synthon in two Modifications of Diastereomeric Pinanyl Sulfoxides Co-Crystal. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 2222-2231.	1.6	9
25	When two symmetrically independent molecules must be different: "Crystallization-induced diastereomerization―of chiral pinanyl sulfone. CrystEngComm, 2014, 16, 4314-4321.	2.6	25
26	Study of "Racemic Compound-Like―Behavior of Diastereomeric Mixture of Pinanyl Sulfoxides by X-Ray Diffraction, IR Spectroscopy, and DFT Calculations. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 615-629.	1.6	10
27	Z′ = 2 crystallization of the three isomeric piridinoylhydrazone derivatives of isosteviol. CrystEngComm, 2014, 16, 6234-6243.	2.6	7
28	Structural diversity of interaction products of mucochloric acid and its derivatives with 1,2-ethanedithiol. Tetrahedron, 2010, 66, 9945-9953.	1.9	19