Rafal Butowt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2209886/publications.pdf Version: 2024-02-01

RAFAL RUTOWT

#	Article	IF	CITATIONS
1	Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. ACS Chemical Neuroscience, 2020, 11, 1555-1562.	1.7	340
2	SARS-CoV-2: Olfaction, Brain Infection, and the Urgent Need for Clinical Samples Allowing Earlier Virus Detection. ACS Chemical Neuroscience, 2020, 11, 1200-1203.	1.7	293
3	Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. Neuroscientist, 2021, 27, 582-603.	2.6	238
4	Prevalence of Chemosensory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis Reveals Significant Ethnic Differences. ACS Chemical Neuroscience, 2020, 11, 2944-2961.	1.7	189
5	The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models. Acta Neuropathologica, 2021, 141, 809-822.	3.9	94
6	Anosmia in COVID-19: A Bumpy Road to Establishing a Cellular Mechanism. ACS Chemical Neuroscience, 2020, 11, 2152-2155.	1.7	77
7	Chemosensory Dysfunction in COVID-19: Integration of Genetic and Epidemiological Data Points to D614G Spike Protein Variant as a Contributing Factor. ACS Chemical Neuroscience, 2020, 11, 3180-3184.	1.7	59
8	Why Does the Omicron Variant Largely Spare Olfactory Function? Implications for the Pathogenesis of Anosmia in Coronavirus Disease 2019. Journal of Infectious Diseases, 2022, 226, 1304-1308.	1.9	47
9	The D614G Virus Mutation Enhances Anosmia in COVID-19 Patients: Evidence from a Systematic Review and Meta-analysis of Studies from South Asia. ACS Chemical Neuroscience, 2021, 12, 3535-3549.	1.7	46
10	The route of SARS-CoV-2 to brain infection: have we been barking up the wrong tree?. Molecular Neurodegeneration, 2022, 17, 20.	4.4	21
11	Expression of the ACE2 Virus Entry Protein in the Nervus Terminalis Reveals the Potential for an Alternative Route to Brain Infection in COVID-19. Frontiers in Cellular Neuroscience, 2021, 15, 674123.	1.8	16
12	New study on prevalence of anosmia in COVID-19 implicates the D614G virus mutation as a major contributing factor to chemosensory dysfunction. European Archives of Oto-Rhino-Laryngology, 2021, 278, 3593-3594.	0.8	8
13	Battle at the entrance gate: CIITA as a weapon to prevent the internalization of SARS-CoV-2 and Ebola viruses. Signal Transduction and Targeted Therapy, 2020, 5, 278.	7.1	7
14	Activity-dependent and graded BACE1 expression in the olfactory epithelium is mediated by the retinoic acid metabolizing enzyme CYP26B1. Brain Structure and Function, 2015, 220, 2143-2157.	1.2	5
15	Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection (Russian translation). Juvenis Scientia, 2021, 7, 28-59.	0.1	1