
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2209700/publications.pdf Version: 2024-02-01

Ιιιμα Μεριι Δα

#	Article	IF	CITATIONS
1	Phylogenomics of Northeast Asian <i>Pungitius</i> sticklebacks. Diversity and Distributions, 2022, 28, 2610-2621.	1.9	8
2	Genomic evidence for adaptive differentiation among <i>Microhyla fissipes</i> populations: Implications for conservation. Diversity and Distributions, 2022, 28, 2665-2680.	1.9	5
3	Cranial osteology of <i>Hypoptophis</i> (Aparallactinae: Atractaspididae: Caenophidia), with a discussion on the evolution of its fossorial adaptations. Journal of Morphology, 2022, 283, 510-538.	0.6	1
4	Sexâ€related differences in aging rate are associated with sex chromosome system in amphibians. Evolution; International Journal of Organic Evolution, 2022, 76, 346-356.	1.1	7
5	Age-dependent genetic architecture across ontogeny of body size in sticklebacks. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220352.	1.2	3
6	Allopatric origin of sympatric whitefish morphs with insights on the genetic basis of their reproductive isolation. Evolution; International Journal of Organic Evolution, 2022, 76, 1905-1913.	1.1	0
7	Effects of ambient temperatures on evolutionary potential of reproductive timing in boreal passerines. Journal of Animal Ecology, 2021, 90, 367-375.	1.3	4
8	Genetic population structure constrains local adaptation in sticklebacks. Molecular Ecology, 2021, 30, 1946-1961.	2.0	33
9	Biases in demographic modelling affect our understanding of recent divergence. Molecular Biology and Evolution, 2021, 38, 2967-2985.	3.5	37
10	Population Structure Limits Parallel Evolution in Sticklebacks. Molecular Biology and Evolution, 2021, 38, 4205-4221.	3.5	37
11	Automated improvement of stickleback reference genome assemblies with <scp>Lepâ€Anchor</scp> software. Molecular Ecology Resources, 2021, 21, 2166-2176.	2.2	21
12	Habitat segregation of plate phenotypes in a rapidly expanding population of threeâ€spined stickleback. Ecosphere, 2021, 12, e03561.	1.0	7
13	Genomic Evidence for Speciation with Gene Flow in Broadcast Spawning Marine Invertebrates. Molecular Biology and Evolution, 2021, 38, 4683-4699.	3.5	17
14	Examining the effects of authentic C&R on the reproductive potential of Northern pike. Fisheries Research, 2021, 243, 106068.	0.9	5
15	Cast Away in the Adriatic: Low Degree of Parallel Genetic Differentiation in Three‧pined Sticklebacks. Molecular Ecology, 2021, , .	2.0	6
16	Thermal conditions predict intraspecific variation in senescence rate in frogs and toads. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
17	Estimating uncertainty in divergence times among three-spined stickleback clades using the multispecies coalescent. Molecular Phylogenetics and Evolution, 2020, 142, 106646.	1.2	31
18	Phenotypic flexibility in background-mediated color change in sticklebacks. Behavioral Ecology, 2020, 31, 950-959.	1.0	8

#	Article	IF	CITATIONS
19	The roles of climate, geography and natural selection as drivers of genetic and phenotypic differentiation in a widespread amphibian <i>Hyla annectans</i> (Anura: Hylidae). Molecular Ecology, 2020, 29, 3667-3683.	2.0	20
20	Genomic and chemical evidence for local adaptation in resistance to different herbivores in <i>Datura stramonium</i> . Evolution; International Journal of Organic Evolution, 2020, 74, 2629-2643.	1.1	18
21	Effects of temperature on growth and development of amphibian larvae across an altitudinal gradient in the Tibetan Plateau. Animal Biology, 2020, 70, 239-250.	0.6	3
22	On the causes of geographically heterogeneous parallel evolution in sticklebacks. Nature Ecology and Evolution, 2020, 4, 1105-1115.	3.4	72
23	Determinants and Consequences of Dispersal in Vertebrates with Complex Life Cycles: A Review of Pond-Breeding Amphibians. Quarterly Review of Biology, 2020, 95, 1-36.	0.0	85
24	Population transcriptomics reveals weak parallel genetic basis in repeated marine and freshwater divergence in nineâ€spined sticklebacks. Molecular Ecology, 2020, 29, 1642-1656.	2.0	17
25	A phylogenomic perspective on diversity, hybridization and evolutionary affinities in the stickleback genus <i>Pungitius</i> . Molecular Ecology, 2019, 28, 4046-4064.	2.0	39
26	Complete mitochondrial genome sequence of the Himalayan Griffon, <i>Gyps himalayensis</i> (Accipitriformes: Accipitridae): Sequence, structure, and phylogenetic analyses. Ecology and Evolution, 2019, 9, 8813-8828.	0.8	14
27	Adaptive responses of animals to climate change are most likely insufficient. Nature Communications, 2019, 10, 3109.	5.8	285
28	A high-quality assembly of the nine-spined stickleback (Pungitius pungitius) genome. Genome Biology and Evolution, 2019, 11, 3291-3308.	1.1	54
29	From ecology to genetics and back: the tale of two flounder species in the Baltic Sea. ICES Journal of Marine Science, 2019, 76, 2267-2275.	1.2	10
30	Aging threeâ€spined sticklebacks <i>Gasterosteus aculeatus</i> : comparison of estimates from three structures . Journal of Fish Biology, 2019, 95, 802-811.	0.7	5
31	Phylogeographic patterns and conservation implications of the endangered Chinese giant salamander. Ecology and Evolution, 2019, 9, 3879-3890.	0.8	20
32	The role of landscape and history on the genetic structure of peripheral populations of the Near Eastern fire salamander, Salamandra infraimmaculata, in Northern Israel. Conservation Genetics, 2019, 20, 875-889.	0.8	15
33	Cryptic temporal changes in stock composition explain the decline of a flounder (Platichthysspp.) assemblage. Evolutionary Applications, 2019, 12, 549-559.	1.5	10
34	FishResp: R package and GUI application for analysis of aquatic respirometry data. , 2019, 7, coz003.		19
35	Variation in sexual brain size dimorphism over the breeding cycle in the three-spined stickleback. Journal of Experimental Biology, 2019, 222, .	0.8	7
36	Effects of marker type and filtering criteria on <i>Q</i> _{ST} - <i>F</i> _{ST} comparisons. Royal Society Open Science, 2019, 6, 190666.	1.1	12

#	Article	IF	CITATIONS
37	The evolution of sex determination associated with a chromosomal inversion. Nature Communications, 2019, 10, 145.	5.8	64
38	Linkage disequilibrium clusteringâ€based approach for association mapping with tightly linked genomewide data. Molecular Ecology Resources, 2018, 18, 809-824.	2.2	28
39	Evolutionary Responses to Climate Change. , 2018, , 51-59.		2
40	Selection on the morphology–physiologyâ€performance nexus: Lessons from freshwater stickleback morphs. Ecology and Evolution, 2018, 8, 1286-1299.	0.8	9
41	OBSOLETE: Evolution in response to climate change. , 2018, , .		0
42	Modulation of Gene Expression in Liver of Hibernating Asiatic Toads (Bufo gargarizans). International Journal of Molecular Sciences, 2018, 19, 2363.	1.8	11
43	Platichthys solemdali sp. nov. (Actinopterygii, Pleuronectiformes): A New Flounder Species From the Baltic Sea. Frontiers in Marine Science, 2018, 5, .	1.2	36
44	Heterochronic development of lateral plates in the three-spined stickleback induced by thyroid hormone level alterations. PLoS ONE, 2018, 13, e0194040.	1.1	8
45	Worldwide phylogeny of three-spined sticklebacks. Molecular Phylogenetics and Evolution, 2018, 127, 613-625.	1.2	50
46	Morphologically indistinguishable hybrid Carassius female with 156 chromosomes: A threat for the threatened crucian carp, C. carassius, L. PLoS ONE, 2018, 13, e0190924.	1.1	22
47	Deciphering the genomic architecture of the stickleback brain with a novel multilocus geneâ€mapping approach. Molecular Ecology, 2017, 26, 1557-1575.	2.0	20
48	Environmental enrichment, sexual dimorphism, and brain size in sticklebacks. Ecology and Evolution, 2017, 7, 1691-1698.	0.8	21
49	Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback <i>Gasterosteus aculeatus</i> . G3: Genes, Genomes, Genetics, 2017, 7, 165-178.	0.8	22
50	Kidney morphology and candidate gene expression shows plasticity in sticklebacks adapted to divergent osmotic environments. Journal of Experimental Biology, 2017, 220, 2175-2186.	0.8	36
51	Extraordinarily rapid speciation in a marine fish. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6074-6079.	3.3	99
52	Small-scale spatial and temporal variation of life-history traits of common frogs (Rana temporaria) in sub-Arctic Finland. Polar Biology, 2017, 40, 1581-1592.	0.5	5
53	Structure and stability of genetic variance–covariance matrices: A Bayesian sparse factor analysis of transcriptional variation in the threeâ€spined stickleback. Molecular Ecology, 2017, 26, 5099-5113.	2.0	5
54	Phylogeography and historical introgression in smoothtail nine-spined sticklebacks, Pungitius laevis (Gasterosteiformes: Gasterosteidae). Biological Journal of the Linnean Society, 2017, 121, 340-354.	0.7	4

#	Article	IF	CITATIONS
55	Origin and introduction history of the least weasel (Mustela nivalis) on Mediterranean and Atlantic islands inferred from genetic data. Biological Invasions, 2017, 19, 399-421.	1.2	9
56	Cannibalism facilitates gigantism in a nineâ€spined stickleback (<i>Pungitius pungitius</i>) population. Ecology of Freshwater Fish, 2017, 26, 686-694.	0.7	5
57	Age at maturation has sex- and temperature-specific effects on telomere length in a fish. Oecologia, 2017, 184, 767-777.	0.9	13
58	A universal and reliable assay for molecular sex identification of threeâ€spined sticklebacks (<i>Gasterosteus aculeatus</i>). Molecular Ecology Resources, 2016, 16, 1389-1400.	2.2	14
59	Genomewide scan for adaptive differentiation along altitudinal gradient in the Andrew's toad <i>Bufo andrewsi</i> . Molecular Ecology, 2016, 25, 3884-3900.	2.0	38
60	Population genomic evidence for adaptive differentiation in the Baltic Sea herring. Molecular Ecology, 2016, 25, 2833-2852.	2.0	80
61	Effects of perceived predation risk and social environment on the development of three-spined stickleback (<i>Gasterosteus aculeatus</i>) morphology. Biological Journal of the Linnean Society, 2016, 118, 520-535.	0.7	15
62	A test for withinâ€lake niche differentiation in the nineâ€spined sticklebacks (<i>Pungitius pungitius</i>). Ecology and Evolution, 2016, 6, 4753-4760.	0.8	1
63	Quantitative trait locus analysis of body shape divergence in nine-spined sticklebacks based on high-density SNP-panel. Scientific Reports, 2016, 6, 26632.	1.6	32
64	The genetic contribution to sex determination and number of sex chromosomes vary among populations of common frogs (Rana temporaria). Heredity, 2016, 117, 25-32.	1.2	29
65	Heritability and evolvability of fitness and nonfitness traits: Lessons from livestock. Evolution; International Journal of Organic Evolution, 2016, 70, 1770-1779.	1.1	35
66	Comparison of catch per unit effort among four minnow trap models in the three-spined stickleback (Gasterosteus aculeatus) fishery. Scientific Reports, 2016, 5, 18548.	1.6	5
67	Complete mitochondrial genome of the Greek nine-spined stickleback Pungitius hellenicus (Gasterosteiformes, Gasterosteidae). Mitochondrial DNA Part B: Resources, 2016, 1, 66-67.	0.2	2
68	Complete mitochondrial genome of the Ukrainian nine-spined stickleback Pungitius platygaster (Gasterosteiformes, Gasterosteidae). Mitochondrial DNA Part B: Resources, 2016, 1, 68-69.	0.2	1
69	Complete mitochondrial genomes of the smooth tail nine-spined sticklebacks Pungitius laevis (Gasterosteiformes, Gasterosteidae). Mitochondrial DNA Part B: Resources, 2016, 1, 70-71.	0.2	2
70	Complete mitochondrial genome of the nine-spined stickleback <i>Pungitius pungitius</i> (Gasterosteiformes, Gasterosteidae). Mitochondrial DNA Part B: Resources, 2016, 1, 72-73.	0.2	5
71	Complete mitochondrial genome of the Sakhalin nine-spined stickleback Pungitius tymensis (Gasterosteiformes, Gasterosteidae). Mitochondrial DNA Part B: Resources, 2016, 1, 74-75.	0.2	1
72	On plasticity of aggression: influence of past and present predation risk, social environment and sex. Behavioral Ecology and Sociobiology, 2016, 70, 179-187.	0.6	15

#	Article	IF	CITATIONS
73	Construction of Ultradense Linkage Maps with Lep-MAP2: Stickleback F ₂ Recombinant Crosses as an Example. Genome Biology and Evolution, 2016, 8, 78-93.	1.1	116
74	Taxonomic status and origin of the Egyptian weasel (Mustela subpalmata) inferred from mitochondrial DNA. Genetica, 2016, 144, 191-202.	0.5	5
75	Solutions for Archiving Data in Long-Term Studies: A Reply to Whitlock et al Trends in Ecology and Evolution, 2016, 31, 85-87.	4.2	10
76	A New Species of Frog (Anura: Dicroglossidae) Discovered from the Mega City of Dhaka. PLoS ONE, 2016, 11, e0149597.	1.1	7
77	Population divergence in compensatory growth responses and their costs in sticklebacks. Ecology and Evolution, 2015, 5, 7-23.	0.8	14
78	Mitochondrial phylogeography and cryptic divergence in the stickleback genus <i>Pungitius</i> . Journal of Biogeography, 2015, 42, 2334-2348.	1.4	23
79	Experimental evidence for sex-specific plasticity in adult brain. Frontiers in Zoology, 2015, 12, 38.	0.9	17
80	Factors influencing three-spined stickleback GasterosteusÂaculeatus (Linnaeus 1758) catch per unit effort. Journal of Applied Ichthyology, 2015, 31, 905-908.	0.3	4
81	Evolution of anuran brains: disentangling ecological and phylogenetic sources of variation. Journal of Evolutionary Biology, 2015, 28, 1986-1996.	0.8	50
82	A New Species of Euphlyctis (Anura: Dicroglossidae) from Barisal, Bangladesh. PLoS ONE, 2015, 10, e0116666.	1.1	12
83	A New Species of Microhyla (Anura: Microhylidae) from Nilphamari, Bangladesh. PLoS ONE, 2015, 10, e0119825.	1.1	24
84	Temporal Stability of Genetic Variability and Differentiation in the Three-Spined Stickleback (Gasterosteus aculeatus). PLoS ONE, 2015, 10, e0123891.	1.1	15
85	Genetic Variability and Structuring of Arctic Charr (Salvelinus alpinus) Populations in Northern Fennoscandia. PLoS ONE, 2015, 10, e0140344.	1.1	10
86	Baiting improves CPUE in nineâ€spined stickleback (P ungitius pungitius) minnow trap fishery. Ecology and Evolution, 2015, 5, 3737-3742.	0.8	3
87	Does predation drive morphological differentiation among Adriatic populations of the three-spined stickleback?. Biological Journal of the Linnean Society, 2015, 115, 219-240.	0.7	10
88	Quantitative genetic analysis of brain size variation in sticklebacks: support for the mosaic model of brain evolution. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151008.	1.2	41
89	Archiving Primary Data: Solutions for Long-Term Studies. Trends in Ecology and Evolution, 2015, 30, 581-589.	4.2	98
90	Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biology, 2015, 13, 19.	1.7	122

#	Article	IF	CITATIONS
91	Perplexing effects of phenotypic plasticity. Nature, 2015, 525, 326-327.	13.7	10
92	The Evolution and Adaptive Potential of Transcriptional Variation in Sticklebacks—Signatures of Selection and Widespread Heritability. Molecular Biology and Evolution, 2015, 32, 674-689.	3.5	75
93	Andrew meets Rensch: sexual size dimorphism and the inverse of Rensch's rule in Andrew's toad (Bufo) Ţ	j ETQq1 1 0.9	0.784314 rg
94	Consistent isotopic differences between Schistocephalus spp. parasites and their stickleback hosts. Diseases of Aquatic Organisms, 2015, 115, 121-128.	0.5	8
95	Lakes and ponds as model systems to study parallel evolution. Journal of Limnology, 2014, 73, .	0.3	5
96	Crossâ€generational costs of compensatory growth in nineâ€spined sticklebacks. Oikos, 2014, 123, 1489-1498.	1.2	9
97	Evidence for sexâ€specific selection in brain: a case study of the nineâ€spined stickleback. Journal of Evolutionary Biology, 2014, 27, 1604-1612.	0.8	21
98	Mechanism of hybridization between bream <i>Abramis brama</i> and roach <i>Rutilus rutilus</i> in their native range. Journal of Fish Biology, 2014, 84, 237-242.	0.7	11
99	Identification of Major and Minor QTL for Ecologically Important Morphological Traits in Three-Spined Sticklebacks (<i>Gasterosteus aculeatus</i>). G3: Genes, Genomes, Genetics, 2014, 4, 595-604.	0.8	30
100	Genome-Wide Linkage Disequilibrium in Nine-Spined Stickleback Populations. G3: Genes, Genomes, Genetics, 2014, 4, 1919-1929.	0.8	13
101	BRINGING HABITAT INFORMATION INTO STATISTICAL TESTS OF LOCAL ADAPTATION IN QUANTITATIVE TRAITS: A CASE STUDY OF NINE-SPINED STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2014, 68, 559-568.	1.1	45
102	QTL Analysis of Behavior in Nine-Spined Sticklebacks (Pungitius pungitius). Behavior Genetics, 2014, 44, 77-88.	1.4	19
103	Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolutionary Applications, 2014, 7, 1-14.	1.5	952
104	Geographic variation in sex hromosome differentiation in the common frog (<i><scp>R</scp>ana) Tj ETQqO O</i>	0_rgBT /O	verlock 10 T 43
105	Landscape influences on dispersal behaviour: a theoretical model and empirical test using the fire salamander, Salamandra infraimmaculata. Oecologia, 2014, 175, 509-520.	0.9	22
106	Disentangling plastic and genetic changes in body mass of <scp>S</scp> iberian jays. Journal of Evolutionary Biology, 2014, 27, 1849-1858.	0.8	13
107	Local adaptation to salinity in the threeâ€spined stickleback?. Journal of Evolutionary Biology, 2014, 27, 290-302.	0.8	65

108 Evolutionary potential and constraints in wild populations. , 2014, , 190-208.

41

#	Article	IF	CITATIONS
109	Geographic Variation in Age Structure and Longevity in the Nine-Spined Stickleback (Pungitius) Tj ETQq1 1 0.784	314 rgBT , 1.1	Overlock 10
110	Large differences in catch per unit of effort between two minnow trap models. BMC Research Notes, 2013, 6, 151.	0.6	12
111	Evidence for adaptive phenotypic differentiation in <scp>B</scp> altic <scp>S</scp> ea sticklebacks. Journal of Evolutionary Biology, 2013, 26, 1700-1715.	0.8	50
112	Isolation and characterization of 113 polymorphic microsatellite loci for the Tibetan frog (Nanorana) Tj ETQq0 0 0	rgBT /Ov 0.4	erlock 10 Tf 2
113	Evolution of stickleback feeding behaviour: genetics of population divergence at different	0.8	17

	ontogenetic stages, journal of Evolutionally biology, 2013, 20, 353 302.		
114	<scp>driftsel</scp> : an R package for detecting signals of natural selection in quantitative traits. Molecular Ecology Resources, 2013, 13, 746-754.	2.2	53
115	Ecological genomics of local adaptation. Nature Reviews Genetics, 2013, 14, 807-820.	7.7	1,099
116	Quantitative trait loci for growth and body size in the nineâ€spined stickleback <i><scp>P</scp>ungitius pungitius </i> <scp>L.</scp> . Molecular Ecology, 2013, 22, 5861-5876.	2.0	29
117	The role of golf courses in maintaining genetic connectivity between common frog (Rana temporaria) populations in an urban setting. Conservation Genetics, 2013, 14, 1057-1064.	0.8	13
118	Genetic biodiversity in the Baltic Sea: species-specific patterns challenge management. Biodiversity and Conservation, 2013, 22, 3045-3065.	1.2	50
119	Genomic divergence between nine- and three-spined sticklebacks. BMC Genomics, 2013, 14, 756.	1.2	42

High degree of genetic differentiation in marine three \hat{s} pined sticklebacks (<i><scp>G</scp>asterosteus) Tj ETQq0.0 0 rgBT/Overlock (Scp>G</scp>asterosteus) Tj ETQq0.0 0 rgBT/Overlock

121	Optimal growth strategies under divergent predation pressure. Journal of Fish Biology, 2013, 82, 318-331.	0.7	8
122	Genetic population structure of the endangered fire salamander (<i><scp>S</scp>alamandra) Tj ETQq0 0 0 rgBT / 412-421.</i>	Overlock 1.5	10 Tf 50 222 28
123	Facultative Sex Allocation and Sexâ€Specific Offspring Survival in <scp>B</scp> arrow's Goldeneyes. Ethology, 2013, 119, 146-155.	0.5	1
124	Molecular evolutionary and population genomic analysis of the nineâ€spined stickleback using a modified restrictionâ€siteâ€associated <scp>DNA</scp> tag approach. Molecular Ecology, 2013, 22, 565-582.	2.0	85
125	QST–FST comparisons: evolutionary and ecological insights from genomic heterogeneity. Nature Reviews Genetics, 2013, 14, 179-190.	7.7	362
126	Characterizing genic and nongenic molecular markers: comparison of microsatellites and <scp>SNP</scp> s. Molecular Ecology Resources, 2013, 13, 377-392.	2.2	110

#	Article	IF	CITATIONS
127	Evidence for genetic differentiation in timing of maturation among nineâ€spined stickleback populations. Journal of Evolutionary Biology, 2013, 26, 775-782.	0.8	14
128	High degree of cryptic population differentiation in the <scp>B</scp> altic <scp>S</scp> ea herring <i><scp>C</scp>lupea harengus</i> . Molecular Ecology, 2013, 22, 2931-2940.	2.0	101
129	HETEROGENEOUS GENOMIC DIFFERENTIATION IN MARINE THREESPINE STICKLEBACKS: ADAPTATION AL ENVIRONMENTAL GRADIENT. Evolution; International Journal of Organic Evolution, 2013, 67, 2530-2546.	- <u>ON</u> G AN	77
130	Genetic Architecture of Parallel Pelvic Reduction in Ninespine Sticklebacks. G3: Genes, Genomes, Genetics, 2013, 3, 1833-1842.	0.8	34
131	Transcription and redox enzyme activities: comparison of equilibrium and disequilibrium levels in the three-spined stickleback. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122974.	1.2	21
132	Progressive Recombination Suppression and Differentiation in Recently Evolved Neo-sex Chromosomes. Molecular Biology and Evolution, 2013, 30, 1131-1144.	3.5	93
133	Oceanographic connectivity and environmental correlates of genetic structuring in Atlantic herring in the Baltic Sea. Evolutionary Applications, 2013, 6, 549-567.	1.5	69
134	Asymmetry in threespine stickleback lateral plates. Journal of Zoology, 2013, 289, 279-284.	0.8	3
135	Nineâ€spined stickleback (<i>Pungitius pungitius</i>): an emerging model for evolutionary biology research. Annals of the New York Academy of Sciences, 2013, 1289, 18-35.	1.8	64
136	Potential effects of climate change on the distribution of the common frog Rana temporaria at its northern range margin. Israel Journal of Ecology and Evolution, 2013, 59, 130-140.	0.2	7
137	Evolutionary ecology of intraspecific brain size variation: a review. Ecology and Evolution, 2013, 3, 2751-2764.	0.8	112
138	Variation in Age and Size in Fennoscandian Three-Spined Sticklebacks (Gasterosteus aculeatus). PLoS ONE, 2013, 8, e80866.	1.1	32
139	No evidence for inbreeding avoidance through active mate choice in red-billed gulls. Behavioral Ecology, 2012, 23, 672-675.	1.0	11
140	Brain development and predation: plastic responses depend on evolutionary history. Biology Letters, 2012, 8, 249-252.	1.0	60
141	Isolation and Characterization of 13 New Nine-Spined Stickleback, <i>Pungitius pungitius</i> , Microsatellites Located Nearby Candidate Genes for Behavioural Variation. Annales Zoologici Fennici, 2012, 49, 123-128.	0.2	9
142	Spectral tuning by selective chromophore uptake in rods and cones of eight populations of nine-spined stickleback (<i>Pungitius pungitius</i>). Journal of Experimental Biology, 2012, 215, 2760-2773.	0.8	25
143	Body size divergence in nine-spined sticklebacks: disentangling additive genetic and maternal effects. Biological Journal of the Linnean Society, 2012, 107, 521-528.	0.7	28
144	EndemicIndiranaFrogs of the Western Ghats Biodiversity Hotspot. Annales Zoologici Fennici, 2012, 49, 257-286.	0.2	10

#	Article	IF	CITATIONS
145	Genetic variation and differentiation in Indirana beddomii frogs endemic to the Western Ghats biodiversity hotspot. Conservation Genetics, 2012, 13, 1459-1467.	0.8	13

Effective size and genetic composition of two exploited, migratory whitefish (Coregonus lavaretus) Tj ETQq0.0 rgBT/Overlock 10 Tf 50

147	Contrasting population structures in two sympatric fishes in the Baltic Sea basin. Marine Biology, 2012, 159, 1659-1672.	0.7	36
148	Seasonality determines patterns of growth and age structure over a geographic gradient in an ectothermic vertebrate. Oecologia, 2012, 170, 641-649.	0.9	41
149	Factors influencing nine-spined stickleback (Pungitus pungitus)trapping success. Annales Zoologici Fennici, 2012, 49, 350-354.	0.2	5
150	High cryptic diversity of endemic <i><scp>I</scp>ndirana</i> frogs in the <scp>W</scp> estern <scp>G</scp> hats biodiversity hotspot. Animal Conservation, 2012, 15, 489-498.	1.5	21
151	High levels of fluctuating asymmetry in isolated stickleback populations. BMC Evolutionary Biology, 2012, 12, 115.	3.2	20
152	Whole mitochondrial genome scan for population structure and selection in the Atlantic herring. BMC Evolutionary Biology, 2012, 12, 248.	3.2	47
153	Morphological anti-predator defences in the nine-spined stickleback: constitutive, induced or both?. Biological Journal of the Linnean Society, 2012, 107, 854-866.	0.7	12
154	Cross-species testing and utility of microsatellite loci in Indirana frogs. BMC Research Notes, 2012, 5, 389.	0.6	10
155	Heritability of Asymmetry and Lateral Plate Number in the Threespine Stickleback. PLoS ONE, 2012, 7, e39843.	1.1	23
156	Sex differences in age structure, growth rate and body size of common frogs Rana temporaria in the subarctic. Polar Biology, 2012, 35, 1505-1513.	0.5	15
157	Evolution in response to climate change: In pursuit of the missing evidence. BioEssays, 2012, 34, 811-818.	1.2	144
158	Development of 61 new transcriptome-derived microsatellites for the Atlantic herring (Clupea) Tj ETQq0 0 0 rgB	[Qverloc	k 10 Tf 50 2: 16
159	Phylogeography of isolated freshwater threeâ€spined stickleback <i>Gasterosteus aculeatus</i> populations in the Adriatic Sea basin. Journal of Fish Biology, 2012, 80, 61-85.	0.7	24

160	MULTIPLE EVOLUTIONARY PATHWAYS TO DECREASED LATERAL PLATE COVERAGE IN FRESHWATER THREESPINE STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2012, 66, 3866-3875.	1.1	39
161	Kin association during brood care in a facultatively social bird: active discrimination or byâ€product of partner choice and demography?. Molecular Ecology, 2012, 21, 3341-3351.	2.0	15

162	(Pungitius pungitius): a combined effect of predation and competition?. Evolutionary Ecology, 2012, 26,	0.5	29
	109-122.		

#	Article	IF	CITATIONS
163	First Record of Natural Hybridization and Introgression between Pikeperch (<i>Sander lucioperca</i>) and Perch (<i>Perca fluviatilis</i>). Annales Zoologici Fennici, 2011, 48, 39-44.	0.2	3
164	A High Incidence of Selection on Physiologically Important Genes in the Three-Spined Stickleback, Gasterosteus aculeatus. Molecular Biology and Evolution, 2011, 28, 181-193.	3.5	90
165	Molecular sexing and population genetic inference using a sex-linked microsatellite marker in the nine-spined stickleback (Pungitius pungitius). BMC Research Notes, 2011, 4, 119.	0.6	28
166	Effects of predator exposure on Hsp70 expression and survival in tadpoles of the Common Frog (RanaÂtemporaria). Canadian Journal of Zoology, 2011, 89, 1249-1255.	0.4	5
167	Inheritance of Vertebral Number in the Three-Spined Stickleback (Gasterosteus aculeatus). PLoS ONE, 2011, 6, e19579.	1.1	17
168	Quantitative Genetics of Body Size and Timing of Maturation in Two Nine-Spined Stickleback (Pungitius) Tj ETQq	10 0 0 rgB ⁻ 1.1	ſ/gyerlock 1
169	Allen's rule revisited: quantitative genetics of extremity length in the common frog along a latitudinal gradient. Journal of Evolutionary Biology, 2011, 24, 59-70.	0.8	59
170	Genetics of body shape and armour variation in threespine sticklebacks. Journal of Evolutionary Biology, 2011, 24, 206-218.	0.8	53
171	Brain plasticity over the metamorphic boundary: carry-over effect of larval environment on froglet brain development. Journal of Evolutionary Biology, 2011, 24, 1380-1385.	0.8	23
172	Intraspecific divergence in the lateral line system in the nineâ€spined stickleback (<i>Pungitius) Tj ETQq0 0 0 rgE</i>	3T /Oyerloo 0.8	ck 10 Tf 50 3
173	Heritability not missing-genetic basis of sexual weaponry uncovered. Molecular Ecology, 2011, 20, 2468-2470.	2.0	Ο
174	Population differences in levels of linkage disequilibrium in the wild. Molecular Ecology, 2011, 20, 2916-2928.	2.0	16
175	Species introduction promotes hybridization and introgression in <i>Coregonus</i> : is there sign of selection against hybrids?. Molecular Ecology, 2011, 20, 3838-3855.	2.0	38
176	Differential responses to related hosts by nesting and nonâ€nesting parasites in a broodâ€parasitic duck. Molecular Ecology, 2011, 20, 5328-5336.	2.0	12
177	GLOBAL ANALYSIS OF GENES INVOLVED IN FRESHWATER ADAPTATION IN THREESPINE STICKLEBACKS (<i>GASTEROSTEUS ACULEATUS</i>). Evolution; International Journal of Organic Evolution, 2011, 65, 1800-1807.	1.1	98
178	PREDATION-IMPOSED SELECTION ON THREESPINE STICKLEBACK (GASTEROSTEUS ACULEATUS) MORPHOLOGY: A TEST OF THE REFUGE USE HYPOTHESIS. Evolution; International Journal of Organic Evolution, 2011, 65, 2916-2926.	1.1	51
179	Body size and the number of vertebrae in the nine-spined stickleback (Pungitius pungitius). Biological Journal of the Linnean Society, 2011, 104, 378-385.	0.7	9
180	Genetic basis of sexual dimorphism in the threespine stickleback Gasterosteus aculeatus. Heredity, 2011, 106, 218-227.	1.2	45

#	Article	IF	CITATIONS
181	First-generation linkage map for the common frog Rana temporaria reveals sex-linkage group. Heredity, 2011, 107, 530-536.	1.2	17
182	Fish age at maturation is influenced by temperature independently of growth. Oecologia, 2011, 167, 435-443.	0.9	53
183	Sex-specific fitness consequences of dispersal in Siberian jays. Behavioral Ecology and Sociobiology, 2011, 65, 131-140.	0.6	30
184	Sixty-two new microsatellite markers for an endemic frog Indirana beddomii from the Western Ghats biodiversity hotspot. Conservation Genetics Resources, 2011, 3, 167-171.	0.4	10
185	Population variation in brain size of nine-spined sticklebacks (Pungitius pungitius) - local adaptation or environmentally induced variation?. BMC Evolutionary Biology, 2011, 11, 75.	3.2	84
186	High degree of sex chromosome differentiation in stickleback fishes. BMC Genomics, 2011, 12, 474.	1.2	23
187	Phenotypic evolution of dispersal-enhancing traits in insular voles. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 225-232.	1.2	40
188	A New Method to Uncover Signatures of Divergent and Stabilizing Selection in Quantitative Traits. Genetics, 2011, 189, 621-632.	1.2	110
189	Phylogeography and Genetic Structuring of European Nine-Spined Sticklebacks (Pungitius) Tj ETQq1 1 0.784314	rgBT /Ov	erlqck 10 Tf 3
190	Avian Z-specific microsatellites map to pseudoautosomal or autosomal chromosomes in the Siberian jay (Perisoreus infaustus): insights into avian genome evolution from cross-species amplification tests. Journal of Genetics, 2010, 89, 223-228.	0.4	2
191	Effective size of an Atlantic salmon (Salmo salar L.) metapopulation in Northern Spain. Conservation Genetics, 2010, 11, 1559-1565.	0.8	20
192	Increasing melanism along a latitudinal gradient in a widespread amphibian: local adaptation, ontogenic or environmental plasticity?. BMC Evolutionary Biology, 2010, 10, 317.	3.2	51
193	Sex-specific population structure, natural selection, and linkage disequilibrium in a wild bird population as revealed by genome-wide microsatellite analyses. BMC Evolutionary Biology, 2010, 10, 66.	3.2	13
194	Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (Pungitius pungitius). BMC Genomics, 2010, 11, 334.	1.2	34
195	RECOMBINATION RATE BETWEEN SEX CHROMOSOMES DEPENDS ON PHENOTYPIC SEX IN THE COMMON FROG. Evolution; International Journal of Organic Evolution, 2010, 64, 3634-3637.	1.1	33
196	History vs. habitat type: explaining the genetic structure of European nine-spined stickleback (<i>Pungitius pungitius</i>) populations. Molecular Ecology, 2010, 19, 1147-1161.	2.0	102
197	Sex reversal and primary sex ratios in the common frog (<i>Rana temporaria</i>). Molecular Ecology, 2010, 19, 1763-1773.	2.0	60
198	Temporal increase in mtDNA diversity in a declining population. Molecular Ecology, 2010, 19, no-no.	2.0	12

#	Article	IF	CITATIONS
199	Genetic evidence for maleâ€biased dispersal in the Siberian jay (<i>Perisoreus infaustus</i>) based on autosomal and Zâ€chromosomal markers. Molecular Ecology, 2010, 19, 5281-5295.	2.0	16
200	Rensch's rule inverted – femaleâ€driven gigantism in nineâ€spined stickleback <i>Pungitius pungitius</i> . Journal of Animal Ecology, 2010, 79, 581-588.	1.3	53
201	Extensive linkage disequilibrium in a wild bird population. Heredity, 2010, 104, 600-610.	1.2	30
202	Genetic and environmental effects on a conditionâ€dependent trait: feather growth in Siberian jays. Journal of Evolutionary Biology, 2010, 23, 715-723.	0.8	34
203	Indirect genetic effects in a sexâ€limited trait: the case of breeding time in redâ€billed gulls. Journal of Evolutionary Biology, 2010, 23, 935-944.	0.8	57
204	Predation―and competitionâ€mediated brain plasticity in <i>Rana temporaria</i> tadpoles. Journal of Evolutionary Biology, 2010, 23, 2300-2308.	0.8	26
205	High Fidelity – No Evidence for Extra-Pair Paternity in Siberian Jays (Perisoreus infaustus). PLoS ONE, 2010, 5, e12006.	1.1	6
206	Identification of Local- and Habitat-Dependent Selection: Scanning Functionally Important Genes in Nine-Spined Sticklebacks (Pungitius pungitius). Molecular Biology and Evolution, 2010, 27, 2775-2789.	3.5	49
207	Female-Biased Expression on the X Chromosome as a Key Step in Sex Chromosome Evolution in Threespine Sticklebacks. Molecular Biology and Evolution, 2010, 27, 1495-1503.	3.5	86
208	Physiological differentiation among nine-spined stickleback populations: Effects of copper exposure. Aquatic Toxicology, 2010, 98, 188-195.	1.9	16
209	Rhh: an R extension for estimating multilocus heterozygosity and heterozygosity–heterozygosity correlation. Molecular Ecology Resources, 2010, 10, 720-722.	2.2	117
210	Sequence Variation in the Melanocortin-1 Receptor Gene (<i>Mc1r</i>) Does Not Explain Variation in the Degree of Melanism in a Widespread Amphibian. Annales Zoologici Fennici, 2010, 47, 37-45.	0.2	13
211	Extrapair Paternity and Maternity in the Three-Toed Woodpecker, Picoides tridactylus: Insights from Microsatellite-Based Parentage Analysis. PLoS ONE, 2009, 4, e7895.	1.1	14
212	Multiple paternity in the moor frog, Rana arvalis. Amphibia - Reptilia, 2009, 30, 515-521.	0.1	14
213	Body temperature, size, nuptial colouration and mating success in male Moor Frogs (Rana arvalis). Amphibia - Reptilia, 2009, 30, 37-43.	0.1	22
214	Habitat-dependent and -independent plastic responses to social environment in the nine-spined stickleback (<i>Pungitius pungitius</i>) brain. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2085-2092.	1.2	105
215	A first-generation microsatellite-based genetic linkage map of the Siberian jay (Perisoreus infaustus): insights into avian genome evolution. BMC Genomics, 2009, 10, 1.	1.2	458

A flexible whole-genome microarray for transcriptomics in three-spine stickleback (Gasterosteus) Tj ETQq0 0 0 rgBT $_{1.2}^{1/0}$ verlock 10 Tf 50 6

#	Article	IF	CITATIONS
217	Estimating fisheriesâ€induced selection: traditional gear selectivity research meets fisheriesâ€induced evolution. Evolutionary Applications, 2009, 2, 234-243.	1.5	65
218	The social cost of shoaling covaries with predation risk in nine-spined stickleback, Pungitius pungitius, populations. Animal Behaviour, 2009, 77, 575-580.	0.8	46
219	Multilocus heterozygosity and inbreeding in the Siberian jay. Conservation Genetics, 2009, 10, 605-609.	0.8	19
220	Relatedness and spatial proximity as determinants of host–parasite interactions in the brood parasitic Barrow's goldeneye (<i>Bucephala islandica</i>). Molecular Ecology, 2009, 18, 2713-2721.	2.0	37
221	Microsatellite variation and population structure of the moor frog (<i>Rana arvalis</i>) in Scandinavia. Molecular Ecology, 2009, 18, 2996-3005.	2.0	19
222	The postglacial recolonization of Northern Europe by Rana arvalis as revealed by microsatellite and mitochondrial DNA analyses. Heredity, 2009, 102, 174-181.	1.2	33
223	Sexual patterns of prebreeding energy reserves in the common frog <i>Rana temporaria</i> along a latitudinal gradient. Ecography, 2009, 32, 831-839.	2.1	37
224	HERITABILITY OF FITNESS COMPONENTS IN A WILD BIRD POPULATION. Evolution; International Journal of Organic Evolution, 2009, 63, 716-726.	1.1	84
225	EVOLUTION OF GIGANTISM IN NINE-SPINED STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2009, 63, 3190-3200.	1.1	85
226	Lunar periodicity and the timing of river entry in Atlantic salmon <i>Salmo salar</i> . Journal of Fish Biology, 2009, 74, 2401-2408.	0.7	14
227	It's the genotype, stupid!. Journal of Animal Breeding and Genetics, 2009, 126, 1-2.	0.8	7
228	Predation mediated population divergence in complex behaviour of nineâ€spined stickleback (<i>Pungitius pungitius</i>). Journal of Evolutionary Biology, 2009, 22, 544-552.	0.8	113
229	Adaptive brain size divergence in nineâ€spined sticklebacks (<i>Pungitius pungitius</i>)?. Journal of Evolutionary Biology, 2009, 22, 1721-1726.	0.8	84
230	Altitudinal decline of body size in a Tibetan frog. Journal of Zoology, 2009, 279, 364-371.	0.8	53
231	Complex patterns of geographic variation in heat tolerance and Hsp70 expression levels in the common frog Rana temporaria. Journal of Thermal Biology, 2009, 34, 49-54.	1.1	24
232	Genetic Constraints on Adaptation?. Science, 2009, 325, 1212-1213.	6.0	12
233	Isolation and characterization of 22 polymorphic microsatellite loci for the Barrow's goldeneye (<i>Bucephala islandica</i>). Molecular Ecology Resources, 2009, 9, 806-808.	2.2	4

 $_{234}$ Isolation and characterization of 145 polymorphic microsatellite loci for the common frog (<i>Rana) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{2.2}^{234}$

#	Article	IF	CITATIONS
235	Growth-history perspective on the decreasing age and size at maturation of exploited Atlantic salmon. Marine Ecology - Progress Series, 2009, 376, 245-252.	0.9	27
236	Experimental support for the cost–benefit model of lizard thermoregulation: the effects of predation risk and food supply. Oecologia, 2008, 155, 1-10.	0.9	71
237	Disentangling genetic vs. environmental causes of sex determination in the common frog, Rana temporaria. BMC Genetics, 2008, 9, 3.	2.7	28
238	Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe—Evidence for multiple glacial refugia. Molecular Phylogenetics and Evolution, 2008, 46, 167-182.	1.2	118
239	Female-biased sex ratios in subarctic common frogs. Journal of Zoology, 2008, 275, 57-63.	0.8	32
240	The role of growth history in determining age and size at maturation in exploited fish populations. Fish and Fisheries, 2008, 9, 201-207.	2.7	19
241	Senescence rates are determined by ranking on the fast–slow lifeâ€history continuum. Ecology Letters, 2008, 11, 664-673.	3.0	317
242	Comparative studies of quantitative trait and neutral marker divergence: a metaâ€analysis. Journal of Evolutionary Biology, 2008, 21, 1-17.	0.8	390
243	Climate change and evolution: disentangling environmental and genetic responses. Molecular Ecology, 2008, 17, 167-178.	2.0	959
244	Identifying footprints of directional and balancing selection in marine and freshwater threeâ€ s pined stickleback (<i>Gasterosteus aculeatus</i>) populations. Molecular Ecology, 2008, 17, 3565-3582.	2.0	130
245	Do male moor frogs (<i>Rana arvalis</i>) lek with kin?. Molecular Ecology, 2008, 17, 2522-2530.	2.0	11
246	Genetic evidence for maleâ€biased dispersal in the threeâ€spined stickleback (<i>Gasterosteus) Tj ETQq0 0 0 rgB</i>	BT /Overlo 2.0	ck <u>10</u> Tf 50 3
247	The impact of climate fluctuation on food availability and reproductive performance of the planktivorous redâ€billed gull <i>Larus novaehollandiae scopulinus</i> . Journal of Animal Ecology, 2008, 77, 1129-1142.	1.3	56
248	GEOGRAPHIC VARIATION IN MATERNAL INVESTMENT: ACIDITY AFFECTS EGG SIZE AND FECUNDITY IN <i>RANA ARVALIS</i>	1.5	37
249	The Role of Fisheries-Induced Evolution. Science, 2008, 320, 47-50.	6.0	42
250	Bergmann's rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13492-13496.	3.3	179
251	Extreme neutral genetic and morphological divergence supports classification of Adriatic three-spined stickleback (Gasterosteus aculeatus) populations as distinct conservation units. Biological Conservation, 2008, 141, 1055-1066.	1.9	27
252	The relative importance of lunar phase and environmental conditions on striped marlin (Tetrapturus) Tj ETQq0 0 (D rgBT /Ov	verlock 10 Tf

ARTICLE IF CITATIONS Isolation and characterization of 17 polymorphic microsatellite loci for the threeâ€toed woodpecker 2.2 (<i>Picoides tridactylus</i>). Molecular Ecology Resources, 2008, 8, 1152-1154. Isolation and characterization of 100 polymorphic microsatellite loci for the Siberian jay 254 2.2 16 (<i>Perisoreus infaustus</i>). Molecular Écology Resources, 2008, 8, 1469-1474. Male breeding success is predicted by call frequency in a territorial species, the agile frog (<i>Rana) Tj ETQq1 1 0.784314 rgBT/Overlo A Bayesian framework for comparative quantitative genetics. Proceedings of the Royal Society B: 256 1.2 65 Biological Sciences, 2008, 275, 669-678. Hitchhiking Mapping Reveals a Candidate Genomic Region for Natural Selection in Three-Spined 1.2 42 Stickleback Chromosome VIII. Genetics, 2008, 178, 453-465. 258 Probabilistic Models for Continuous Ontogenetic Transition Processes. PLoS ONE, 2008, 3, e3677. 4 1.1 259 The role of fisheries-induced evolution. Science, 2008, 320, 47-50; author reply 47-50. 6.0 Evidence for Multiple Retroposition Events and Gene Evolution in the ADP/ATP Translocase Gene 260 1.0 3 Family in Ranid Frogs. Journal of Heredity, 2007, 98, 300-310. Detecting and managing fisheries-induced evolution. Trends in Ecology and Evolution, 2007, 22, 4.2 400 652-659 Responses to climate change in avian migration time—microevolution versus phenotypic plasticity. 262 0.4 149 Climate Research, 2007, 35, 25-35. Maternally determined adaptation to acidity in<i>Rana arvalis</i>: Are laboratory and field estimates 0.4 of embryonic stress tolerance congruent?. Canadian Journal of Zoology, 2007, 85, 832-838. AMPHIBIAN OCCURRENCE IS INFLUENCED BY CURRENT AND HISTORIC LANDSCAPE CHARACTERISTICS. 264 1.8 68 Ecological Applications, 2007, 17, 2298-2309. Genetic variability predicts common frog (Rana temporaria) size at metamorphosis in the wild. 1.2 23 Heredity, 2007, 99, 41-46. Suboptimal thermoregulation in male adders (Vipera berus) after hibernation imposed by 266 0.7 17 spermiogenesis. Biological Journal of the Linnean Society, 2007, 92, 19-27. Anuran abundance and persistence in agricultural landscapes during a climatic extreme. Global 4.2 59 Change Biology, 2007, 13, 300-311. Does habitat fragmentation reduce fitness and adaptability? A case study of the common frog (Rana) Tj ETQq0 0 0 gBT /Overlock 10 Tf 268 Demographic and Genetic Estimates of Effective Population and Breeding Size in the Amphibian Rana 269 2.4 temporaria. Conservation Biology, 2007, 21, 142-151.

²⁷⁰Environmental stress increases skeletal fluctuating asymmetry in the moor frog Rana arvalis.0.941270Oecologia, 2007, 151, 593-604.0.941

#	Article	IF	CITATIONS
271	Morphological Abnormalities in Amphibians in Agricultural Habitats: A Case Study of the Common Frog Rana Temporaria. Copeia, 2006, 2006, 810-817.	1.4	22
272	Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. Journal of Evolutionary Biology, 2006, 19, 1803-1812.	0.8	192
273	History vs. current demography: explaining the genetic population structure of the common frog (<i>Rana temporaria</i>). Molecular Ecology, 2006, 15, 975-983.	2.0	70
274	Genetic relationships among marine and freshwater populations of the European three-spined stickleback (Gasterosteus aculeatus) revealed by microsatellites. Molecular Ecology, 2006, 15, 1519-1534.	2.0	121
275	The utility of QTL-Linked markers to detect selective sweeps in natural populations - a case study of the EDA gene and a linked marker in threespine stickleback. Molecular Ecology, 2006, 15, 4613-4621.	2.0	56
276	TOXICITY OF SIX PESTICIDES TO COMMON FROG (RANA TEMPORARIA) TADPOLES. Environmental Toxicology and Chemistry, 2006, 25, 3164.	2.2	58
277	Contrasting Levels of Variation in Neutral and Quantitative Genetic Loci on Island Populations of Moor Frogs (Rana arvalis). Conservation Genetics, 2006, 8, 45-56.	0.8	45
278	Population divergence in growth rate and antipredator defences in Rana arvalis. Oecologia, 2006, 147, 585-595.	0.9	62
279	Experimental support for the cost–benefit model of lizard thermoregulation. Behavioral Ecology and Sociobiology, 2006, 60, 405-414.	0.6	50
280	Genome size variation in the common frog Rana temporaria. Hereditas, 2006, 143, 155-158.	0.5	9
281	The effects of 20 years of highway presence on the genetic structure of Rana dalmatina populations. Ecoscience, 2006, 13, 531-538.	0.6	64
282	The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Global Change Biology, 2005, 11, 1664-1679.	4.2	92
283	Generation time and temporal scaling of bird population dynamics. Nature, 2005, 436, 99-102.	13.7	172
284	NATURAL SELECTION AND GENETIC VARIATION FOR REPRODUCTIVE REACTION NORMS IN A WILD BIRD POPULATION. Evolution; International Journal of Organic Evolution, 2005, 59, 1362-1371.	1.1	145
285	Factors affecting avian cross-species microsatellite amplification. Journal of Avian Biology, 2005, 36, 348-360.	0.6	104
286	Does testis weight decline towards the Subarctic? A case study on the common frog, Rana temporaria. Die Naturwissenschaften, 2005, 92, 188-192.	0.6	28
287	Maternal investment in egg size: environment- and population-specific effects on offspring performance. Oecologia, 2005, 142, 546-553.	0.9	94
288	Quantitative genetics of larval life-history traits in Rana temporaria in different environmental conditions. Genetical Research, 2005, 86, 161-170.	0.3	48

#	Article	IF	CITATIONS
289	Bias and Precision in QST Estimates: Problems and Some Solutions. Genetics, 2005, 171, 1331-1339.	1.2	154
290	NATURAL SELECTION AND GENETIC VARIATION FOR REPRODUCTIVE REACTION NORMS IN A WILD BIRD POPULATION. Evolution; International Journal of Organic Evolution, 2005, 59, 1362.	1.1	3
291	Common Pesticide Increases Costs of Antipredator Defenses in Rana temporaria Tadpoles. Environmental Science & Technology, 2005, 39, 6079-6085.	4.6	51
292	TIME TO EXTINCTION OF BIRD POPULATIONS. Ecology, 2005, 86, 693-700.	1.5	61
293	Contrasting Quantitative Traits and Neutral Genetic Markers for Genetic Resource Assessment of Mesoamerican Cedrela Odorata. Silvae Genetica, 2005, 54, 281-292.	0.4	22
294	Natural selection and genetic variation for reproductive reaction norms in a wild bird population. Evolution; International Journal of Organic Evolution, 2005, 59, 1362-71.	1.1	39
295	POPULATION DIFFERENTIATION IN G MATRIX STRUCTURE DUE TO NATURAL SELECTION IN RANA TEMPORARIA. Evolution; International Journal of Organic Evolution, 2004, 58, 2013.	1.1	16
296	What type of amphibian tunnel could reduce road kills?. Oryx, 2004, 38, 220-223.	0.5	57
297	Analysis and Interpretation of Long-Term Studies Investigating Responses to Climate Change. Advances in Ecological Research, 2004, 35, 111-130.	1.4	41
298	Lifeâ€History Variation Predicts the Effects of Demographic Stochasticity on Avian Population Dynamics. American Naturalist, 2004, 164, 793-802.	1.0	121
299	Variation in the degree and costs of adaptive phenotypic plasticity among Rana temporaria populations. Journal of Evolutionary Biology, 2004, 17, 1132-1140.	0.8	72
300	High degree of population subdivision in a widespread amphibian. Molecular Ecology, 2004, 13, 2631-2644.	2.0	104
301	Microsatellite marker data suggest sex-biased dispersal in the common frog Rana temporaria. Molecular Ecology, 2004, 13, 2865-2869.	2.0	63
302	Environmental and population dependency of genetic variability-fitness correlations in Rana temporaria. Molecular Ecology, 2004, 14, 311-323.	2.0	71
303	POPULATION DIFFERENTIATION IN G MATRIX STRUCTURE DUE TO NATURAL SELECTION IN RANA TEMPORARIA. Evolution; International Journal of Organic Evolution, 2004, 58, 2013-2020.	1.1	74
304	Temporal variation in predation risk: stage-dependency, graded responses and fitness costs in tadpole antipredator defences. Oikos, 2004, 107, 90-99.	1.2	77
305	Local Adaptation and Genetics of Acid-Stress Tolerance in the Moor Frog, Rana arvalis. Conservation Genetics, 2004, 5, 513-527.	0.8	44
306	Tail loss and thermoregulation in the common lizard Zootoca vivipara. Die Naturwissenschaften, 2004, 91, 485-488.	0.6	12

#	Article	IF	CITATIONS
307	WWW design code - a new tool for colour estimation in animal studies. Frontiers in Zoology, 2004, 1, 2.	0.9	9
308	Singleâ€Generation Estimates of Individual Fitness as Proxies for Longâ€Term Genetic Contribution. American Naturalist, 2004, 163, 505-517.	1.0	147
309	Life-History Variation Predicts the Effects of Demographic Stochasticity on Avian Population Dynamics. American Naturalist, 2004, 164, 793.	1.0	10
310	A simple RFLP method for identification of two ranid frogs. Conservation Genetics, 2003, 4, 801-803.	0.8	11
311	To thermoconform or thermoregulate? An assessment of thermoregulation opportunities for the lizard Zootoca vivipara in the subarctic. Polar Biology, 2003, 26, 486-490.	0.5	36
312	Latitudinal and temperature-dependent variation in embryonic development and growth in Rana temporaria. Oecologia, 2003, 135, 548-554.	0.9	65
313	Effects of ultraviolet-B radiation on metamorphic traits in the common frog Rana temporaria. Journal of Zoology, 2003, 259, 57-62.	0.8	19
314	Geography of fluctuating asymmetry in the greenfinch, Carduelis chloris. Oikos, 2003, 100, 507-516.	1.2	23
315	Latitudinal countergradient variation in the common frog (Rana temporaria) development rates - evidence for local adaptation. Journal of Evolutionary Biology, 2003, 16, 996-1005.	0.8	250
316	Sire coloration influences offspring survival under predation risk in the moorfrog. Journal of Evolutionary Biology, 2003, 16, 1288-1295.	0.8	55
317	Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data. Molecular Ecology, 2003, 12, 1963-1978.	2.0	177
318	Prediction of offspring fitness based on parental genetic diversity in endangered salmonid populations. Journal of Fish Biology, 2003, 63, 909-927.	0.7	18
319	Genetic and maternal effect influences on viability of common frog tadpoles under different environmental conditions. Heredity, 2003, 91, 117-124.	1.2	57
320	GEOGRAPHIC VARIATION IN ACID STRESS TOLERANCE OF THE MOOR FROG, RANA ARVALIS. I. LOCAL ADAPTATION. Evolution; International Journal of Organic Evolution, 2003, 57, 352-362.	1.1	83
321	GEOGRAPHIC VARIATION IN ACID STRESS TOLERANCE OF THE MOOR FROG, RANA ARVALIS. II. ADAPTIVE MATERNAL EFFECTS. Evolution; International Journal of Organic Evolution, 2003, 57, 363-371.	1.1	36
322	NATURAL SELECTION AND INHERITANCE OF BREEDING TIME AND CLUTCH SIZE IN THE COLLARED FLYCATCHER. Evolution; International Journal of Organic Evolution, 2003, 57, 406-420.	1.1	233
323	Effects of ultraviolet-B radiation on behaviour and growth of three species of amphibian larvae. Chemosphere, 2003, 51, 197-204.	4.2	25
324	When environmental variation short-circuits natural selection. Trends in Ecology and Evolution, 2003, 18, 207-209.	4.2	88

#	Article	IF	CITATIONS
325	DOES JELLY ENVELOPE PROTECT THE COMMON FROG RANA TEMPORARIA EMBRYOS FROM UV-B RADIATION?. Herpetologica, 2003, 59, 293-300.	0.2	13
326	GEOGRAPHIC VARIATION IN ACID STRESS TOLERANCE OF THE MOOR FROG, RANA ARVALIS. I. LOCAL ADAPTATION. Evolution; International Journal of Organic Evolution, 2003, 57, 352.	1.1	102
327	NATURAL SELECTION AND INHERITANCE OF BREEDING TIME AND CLUTCH SIZE IN THE COLLARED FLYCATCHER. Evolution; International Journal of Organic Evolution, 2003, 57, 406.	1.1	17
328	GEOGRAPHIC VARIATION IN ACID STRESS TOLERANCE OF THE MOOR FROG, RANA ARVALIS. II. ADAPTIVE MATERNAL EFFECTS. Evolution; International Journal of Organic Evolution, 2003, 57, 363.	1.1	52
329	Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. I. Local adaptation. Evolution; International Journal of Organic Evolution, 2003, 57, 352-62.	1.1	22
330	Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. II. Adaptive maternal effects. Evolution; International Journal of Organic Evolution, 2003, 57, 363-71.	1.1	18
331	Severe inbreeding depression in collared flycatchers (Ficedula albicollis). Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1581-1589.	1.2	167
332	ADAPTIVE PHENOTYPIC PLASTICITY AND GENETICS OF LARVAL LIFE HISTORIES IN TWO RANA TEMPORARIA POPULATIONS. Evolution; International Journal of Organic Evolution, 2002, 56, 617.	1.1	5
333	Do amphibians follow Bergmann's rule?. Canadian Journal of Zoology, 2002, 80, 708-716.	0.4	234
334	Latitudinal Fractionation of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls in Frogs (Rana temporaria). Environmental Science & Technology, 2002, 36, 5057-5061.	4.6	62
335	Genetic population divergence: markers and traits. Trends in Ecology and Evolution, 2002, 17, 501.	4.2	38
336	Quantitative genetic analysis of natural populations: old wine in a new but defective bottle?. Nature Reviews Genetics, 2002, 3, 980-980.	7.7	0
337	Predator-induced plasticity in early life history and morphology in two anuran amphibians. Oecologia, 2002, 132, 524-530.	0.9	86
338	Effects of ultraviolet-B radiation on common frog Rana temporaria embryos from along a latitudinal gradient. Oecologia, 2002, 133, 458-465.	0.9	26
339	Lethal and Sublethal Effects of UV-B/pH Synergism on Common Frog Embryos. Conservation Biology, 2002, 16, 1063-1073.	2.4	39
340	Carry-over effects of embryonic acid conditions on development and growth of Rana temporaria tadpoles. Freshwater Biology, 2002, 47, 19-30.	1.2	46
341	Reproductive timing and individual fitness. Ecology Letters, 2002, 5, 802-810.	3.0	121
342	ADAPTIVE PHENOTYPIC PLASTICITY AND GENETICS OF LARVAL LIFE HISTORIES IN TWO RANA TEMPORARIA POPULATIONS. Evolution; International Journal of Organic Evolution, 2002, 56, 617-627.	1.1	140

#	Article	IF	CITATIONS
343	A low rate of cross-species microsatellite amplification success in Ranid frogs. Conservation Genetics, 2002, 3, 445-449.	0.8	49
344	Avian Quantitative Genetics., 2001,, 179-255.		36
345	Predation-induced effects on hatchling morphology in the common frog (Rana temporaria). Canadian Journal of Zoology, 2001, 79, 926-930.	0.4	22
346	Comparison of nitrate tolerance between different populations of the common frog, Rana temporaria. Aquatic Toxicology, 2001, 54, 1-14.	1.9	79
347	Comparison of genetic differentiation at marker loci and quantitative traits. Journal of Evolutionary Biology, 2001, 14, 892-903.	0.8	809
348	Natural selection on the genetical component of variance in body condition in a wild bird population. Journal of Evolutionary Biology, 2001, 14, 918-929.	0.8	151
349	Effects of ultraviolet-B radiation and pH on early development of the moor frog Rana arvalis. Journal of Applied Ecology, 2001, 38, 628-636.	1.9	19
350	Influence of seasonal time constraints on growth and development of common frog tadpoles: a photoperiod experiment. Oikos, 2001, 95, 451-460.	1.2	50
351	Explaining stasis: microevolutionary studies in natural populations. Genetica, 2001, 112/113, 199-222.	0.5	388
352	Breeding success in Blue Tits: good territories or good parents?. Journal of Avian Biology, 2001, 32, 214-218.	0.6	63
353	Cryptic evolution in a wild bird population. Nature, 2001, 412, 76-79.	13.7	231
354	Predation-induced effects on hatchling morphology in the common frog (<i>Rana temporaria</i>). Canadian Journal of Zoology, 2001, 79, 926-930.	0.4	27
355	Carry–over effects of ultraviolet–B radiation on larval fitness inRana temporaria. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1699-1706.	1.2	90
356	Phenotypic Selection on a Heritable Size Trait Revisited. American Naturalist, 2001, 158, 557-571.	1.0	212
357	Explaining stasis: Microevolutionary studies in natural populations. Contemporary Issues in Genetics and Evolution, 2001, , 199-222.	0.9	0
358	Explaining stasis: microevolutionary studies in natural populations. Genetica, 2001, 112-113, 199-222.	0.5	88
359	Adaptive phenotypic plasticity in timing of metamorphosis in the common frog Rana temporaria. Ecoscience, 2000, 7, 18-24.	0.6	58
360	Spatial dynamics of adaptive sex ratios. Ecology Letters, 2000, 3, 30-34.	3.0	40

#	Article	IF	CITATIONS
361	Climatic effects on breeding and morphology: evidence for phenotypic plasticity. Journal of Animal Ecology, 2000, 69, 395-403.	1.3	269
362	Isolation and characterization of polymorphic microsatellite loci in the common frog,Rana temporaria. Molecular Ecology, 2000, 9, 1938-1939.	2.0	31
363	Fitness and feather wear in the Collared Flycatcher Ficedula albicollis. Journal of Avian Biology, 2000, 31, 504-510.	0.6	36
364	Patterns of natural selection on morphology of male and female collared flycatchers (Ficedula) Tj ETQq0 0 0 rgBT	/Overlock 0.7	10 Tf 50 62: 20
365	Intersexual niche differentiation in the blue tit (Parus caeruleus). Biological Journal of the Linnean Society, 2000, 69, 233-244.	0.7	16
366	Plasticity in age and size at metamorphosis in <i>Rana temporaria</i> ―comparison of high and low latitude populations. Ecography, 2000, 23, 457-465.	2.1	85
367	Lifetime Reproductive Success and Heritability in Nature. American Naturalist, 2000, 155, 301-310.	1.0	309
368	Ambient ultravioletâ€B radiation reduces hatchling size in the common frog Rana temporaria. Ecography, 2000, 23, 531-538.	2.1	8
369	Intersexual niche differentiation in the blue tit (Parus caeruleus). Biological Journal of the Linnean Society, 2000, 69, 233-244.	0.7	2
370	Plasticity in age and size at metamorphosis in Rana temporaria - comparison of high and low latitude populations. Ecography, 2000, 23, 457-465.	2.1	40
371	Ambient ultraviolet-B radiation reduces hatchling size in the common frog Rana temporaria. Ecography, 2000, 23, 531-538.	2.1	31
372	Plumage brightness in relation to haematozoan infections in the greenfinch <i>Carduelis chloris</i> : Bright males are a good bet. Ecoscience, 1999, 6, 12-18.	0.6	46
373	Population divergence and morphometric integration in the greenfinch (Carduelis chloris) – evolution against the trajectory of least resistance?. Journal of Evolutionary Biology, 1999, 12, 103-112.	0.8	74
374	Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity, 1999, 83, 103-109.	1.2	406
375	Birds unlimited. Nature, 1999, 401, 16-16.	13.7	0
376	Testis size variation in the greenfinch Carduelis chloris  : relevance for some recent models of sexual selection. Behavioral Ecology and Sociobiology, 1999, 45, 115-123.	0.6	66
377	Heritable variation and evolution under favourable and unfavourable conditions. Trends in Ecology and Evolution, 1999, 14, 96-101.	4.2	643
378	Genetic variation and natural selection on blue tit body condition in different environments. Genetical Research, 1999, 73, 165-176.	0.3	47

#	Article	IF	CITATIONS
379	Mass-Dependent Mass Loss in Breeding Birds: Getting the Null Hypothesis Right. Oikos, 1999, 87, 191.	1.2	10
380	Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity, 1999, 83, 103-109.	1.2	68
381	Reproductive effort and success are related to haematozoan infections in blue tits. Ecoscience, 1999, 6, 421-428.	0.6	34
382	Sexual Conf lict and Remarriage in Preindustrial Human Populations Causes and Fitness Consequences. Evolution and Human Behavior, 1998, 19, 139-151.	1.4	36
383	Post-juvenile body moult in the Blue TitParus caeruleus: influence of age and nestling history. Bird Study, 1998, 45, 353-360.	0.4	2
384	Adaptive sex ratio variation in pre–industrial human (Homo sapiens) populations?. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 563-568.	1.2	55
385	A sexual conflict in collared flycatchers, Ficedula albicollis: early male moult reduces female fitness. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 2003-2007.	1.2	35
386	Quantitative Genetics of Sexual Size Dimorphism in the Collared Flycatcher, Ficedula albicollis. Evolution; International Journal of Organic Evolution, 1998, 52, 870.	1.1	62
387	QUANTITATIVE GENETICS OF SEXUAL SIZE DIMORPHISM IN THE COLLARED FLYCATCHER, <i>FICEDULA ALBICOLLIS</i> . Evolution; International Journal of Organic Evolution, 1998, 52, 870-876.	1.1	74
388	GENDER AND ENVIRONMENTAL SENSITIVITY IN NESTLING COLLARED FLYCATCHERS. Ecology, 1998, 79, 1939-1948.	1.5	121
389	Genetic Variation and Causes of Genotype-Environment Interaction in the Body Size of Blue Tit (Parus) Tj ETQq1	1	14 rgBT /Ove
390	Historical Demography and Present Day Population Structure of the Greenfinch, Carduelis chloris-An Analysis of mtDNA Control-Region Sequences. Evolution; International Journal of Organic Evolution, 1997, 51, 946.	1.1	54
391	Expression of Genetic Variation in Body Size of the Collared Flycatcher Under Different Environmental Conditions. Evolution; International Journal of Organic Evolution, 1997, 51, 526.	1.1	45
392	EXPRESSION OF GENETIC VARIATION IN BODY SIZE OF THE COLLARED FLYCATCHER UNDER DIFFERENT ENVIRONMENTAL CONDITIONS. Evolution; International Journal of Organic Evolution, 1997, 51, 526-536.	1.1	78
393	HISTORICAL DEMOGRAPHY AND PRESENT DAY POPULATION STRUCTURE OF THE GREENFINCH, <i>CARDUEUS CHLORIS </i> -AN ANALYSIS OF mtDNA CONTROL-REGION SEQUENCES. Evolution; International Journal of Organic Evolution, 1997, 51, 946-956.	1.1	111
394	Mass Loss in Breeding Blue Tits: The Role of Energetic Stress. Journal of Animal Ecology, 1997, 66, 452.	1.3	66
395	Paternal genetic contribution to offspring condition predicted by size of male secondary sexual character. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 297-302.	1.2	251
396	Are Fat Reserves in Migratory Birds Affected by Condition in Early Life?. Journal of Avian Biology, 1997, 28, 279.	0.6	71

#	Article	IF	CITATIONS
397	Quantitative trait and allozyme divergence in the Greenfinch (Carduelis chloris, Aves: Fringillidae). Biological Journal of the Linnean Society, 1997, 61, 243-266.	0.7	55
398	Quantitative trait and allozyme divergence in the Greenfinch (Carduelis chloris, Aves: Fringillidae). Biological Journal of the Linnean Society, 1997, 61, 243-266.	0.7	25
399	Antagonistic natural selection revealed by molecular sex identification of nestling collared flycatchers. Molecular Ecology, 1997, 6, 1167-1175.	2.0	62
400	Genetic Variation in Offspring Condition: An Experiment. Functional Ecology, 1996, 10, 465.	1.7	100
401	Genetic Populations Structure and Gradual Northward Decline of Genetic Variability in the Greenfinch (Carduelis chloris). Evolution; International Journal of Organic Evolution, 1996, 50, 2548.	1.1	13
402	GENETIC POPULATION STRUCTURE AND GRADUAL NORTHWARD DECLINE OF GENETIC VARIABILITY IN THE GREENFINCH (<i>CARDUELIS CHLORIS</i>). Evolution; International Journal of Organic Evolution, 1996, 50, 2548-2557.	1.1	39
403	The successful founder: genetics of introduced Carduelis chloris (greenfinch) populations in New Zealand. Heredity, 1996, 77, 410-422.	1.2	53
404	Temporal Stability and Microgeographic Homogeneity of Heritability Estimates in a Natural Bird Population. Journal of Heredity, 1996, 87, 199-204.	1.0	11
405	Molt and Migratory Condition in Blue Tits: A Serological Study. Condor, 1996, 98, 825-831.	0.7	77
406	Fluctuating Asymmetry and Measurement Error. Systematic Biology, 1995, 44, 97.	2.7	6
407	Fat Reserves and Health State in Migrant Goldcrest Regulus regulus. Functional Ecology, 1995, 9, 842.	1.7	57
408	Offspring number and quality in the blue tit: a quantitative genetic approach. Journal of Zoology, 1995, 237, 615-623.	0.8	28
409	Geographic and individual variation in haematozoan infections in the greenfinch, <i>Carduelis chloris</i> . Canadian Journal of Zoology, 1995, 73, 1798-1804.	0.4	90
410	Fluctuating Asymmetry and Measurement Error. Systematic Biology, 1995, 44, 97-101.	2.7	156
411	Interspecific Competition for Nest Holes Causes Adult Mortality in the Collared Flycatcher. Condor, 1995, 97, 445-450.	0.7	82
412	Do Great Tits (<i>Parus major)</i> Prefer Ectoparasiteâ€free Roost Sites? An Experiment. Ethology, 1995, 99, 53-60.	0.5	23
413	Evolution of morphological differences with moderate genetic correlations among traits as exemplified by two flycatcher species (Ficedula; Muscicapidae). Biological Journal of the Linnean Society, 1994, 52, 19-30.	0.7	21
414	Foster parent experiment reveals no genotype-environment correlation in the external morphology of Ficedula albicollis, the collared flycatcher. Heredity, 1994, 73, 124-129.	1.2	24

#	ARTICLE	IF	CITATIONS
415	Do Scale Anomalies Cause Differential Survival in Vipera berus?. Journal of Herpetology, 1994, 28, 435.	0.2	11
416	Morphological differentiation in Carduelis finches: Adaptive vs. constraint models. Journal of Evolutionary Biology, 1993, 6, 359-373.	0.8	38
417	Inheritance of size and shape in a natural population of collared flycatchers, Ficedula albicollis. Journal of Evolutionary Biology, 1993, 6, 375-395.	0.8	42
418	Variation in number of ventral scales in snakes: effects on body size, growth rate and survival in the adder, <i>Vipera berus</i> . Journal of Zoology, 1993, 230, 101-115.	0.8	47
419	High Frequency of Ventral Scale Anomalies in Vipera berus Populations. Copeia, 1992, 1992, 1127.	1.4	7
420	Maternal and genetic contributions to geographical variation in Rana temporaria larval life-history traits. Biological Journal of the Linnean Society, 0, 76, 61-70.	0.7	92
421	Morphological divergence of North-European nine-spined sticklebacks (Pungitius pungitius): signatures of parallel evolution. Biological Journal of the Linnean Society, 0, 101, 403-416.	0.7	51