
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2209700/publications.pdf Version: 2024-02-01

Ιιιμα Μεριι Δα

#	Article	IF	CITATIONS
1	Ecological genomics of local adaptation. Nature Reviews Genetics, 2013, 14, 807-820.	7.7	1,099
2	Climate change and evolution: disentangling environmental and genetic responses. Molecular Ecology, 2008, 17, 167-178.	2.0	959
3	Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolutionary Applications, 2014, 7, 1-14.	1.5	952
4	Comparison of genetic differentiation at marker loci and quantitative traits. Journal of Evolutionary Biology, 2001, 14, 892-903.	0.8	809
5	Heritable variation and evolution under favourable and unfavourable conditions. Trends in Ecology and Evolution, 1999, 14, 96-101.	4.2	643
6	A first-generation microsatellite-based genetic linkage map of the Siberian jay (Perisoreus infaustus): insights into avian genome evolution. BMC Genomics, 2009, 10, 1.	1.2	458
7	Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity, 1999, 83, 103-109.	1.2	406
8	Detecting and managing fisheries-induced evolution. Trends in Ecology and Evolution, 2007, 22, 652-659.	4.2	400
9	Comparative studies of quantitative trait and neutral marker divergence: a metaâ€analysis. Journal of Evolutionary Biology, 2008, 21, 1-17.	0.8	390
10	Explaining stasis: microevolutionary studies in natural populations. Genetica, 2001, 112/113, 199-222.	0.5	388
11	QST–FST comparisons: evolutionary and ecological insights from genomic heterogeneity. Nature Reviews Genetics, 2013, 14, 179-190.	7.7	362
12	Senescence rates are determined by ranking on the fast–slow lifeâ€history continuum. Ecology Letters, 2008, 11, 664-673.	3.0	317
13	Lifetime Reproductive Success and Heritability in Nature. American Naturalist, 2000, 155, 301-310.	1.0	309
14	Adaptive responses of animals to climate change are most likely insufficient. Nature Communications, 2019, 10, 3109.	5.8	285
15	Climatic effects on breeding and morphology: evidence for phenotypic plasticity. Journal of Animal Ecology, 2000, 69, 395-403.	1.3	269
16	Paternal genetic contribution to offspring condition predicted by size of male secondary sexual character. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 297-302.	1.2	251
17	Latitudinal countergradient variation in the common frog (Rana temporaria) development rates - evidence for local adaptation. Journal of Evolutionary Biology, 2003, 16, 996-1005.	0.8	250
18	Do amphibians follow Bergmann's rule?. Canadian Journal of Zoology, 2002, 80, 708-716.	0.4	234

#	Article	IF	CITATIONS
19	NATURAL SELECTION AND INHERITANCE OF BREEDING TIME AND CLUTCH SIZE IN THE COLLARED FLYCATCHER. Evolution; International Journal of Organic Evolution, 2003, 57, 406-420.	1.1	233
20	Cryptic evolution in a wild bird population. Nature, 2001, 412, 76-79.	13.7	231
21	Phenotypic Selection on a Heritable Size Trait Revisited. American Naturalist, 2001, 158, 557-571.	1.0	212
22	Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. Journal of Evolutionary Biology, 2006, 19, 1803-1812.	0.8	192
23	Bergmann's rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13492-13496.	3.3	179
24	Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data. Molecular Ecology, 2003, 12, 1963-1978.	2.0	177
25	Generation time and temporal scaling of bird population dynamics. Nature, 2005, 436, 99-102.	13.7	172
26	Severe inbreeding depression in collared flycatchers (Ficedula albicollis). Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1581-1589.	1.2	167
27	Fluctuating Asymmetry and Measurement Error. Systematic Biology, 1995, 44, 97-101.	2.7	156
28	Bias and Precision in QST Estimates: Problems and Some Solutions. Genetics, 2005, 171, 1331-1339.	1.2	154
29	Natural selection on the genetical component of variance in body condition in a wild bird population. Journal of Evolutionary Biology, 2001, 14, 918-929.	0.8	151
30	Responses to climate change in avian migration time—microevolution versus phenotypic plasticity. Climate Research, 2007, 35, 25-35.	0.4	149
31	Singleâ€Generation Estimates of Individual Fitness as Proxies for Longâ€Term Genetic Contribution. American Naturalist, 2004, 163, 505-517.	1.0	147
32	NATURAL SELECTION AND GENETIC VARIATION FOR REPRODUCTIVE REACTION NORMS IN A WILD BIRD POPULATION. Evolution; International Journal of Organic Evolution, 2005, 59, 1362-1371.	1.1	145
33	Evolution in response to climate change: In pursuit of the missing evidence. BioEssays, 2012, 34, 811-818.	1.2	144
34	ADAPTIVE PHENOTYPIC PLASTICITY AND GENETICS OF LARVAL LIFE HISTORIES IN TWO RANA TEMPORARIA POPULATIONS. Evolution; International Journal of Organic Evolution, 2002, 56, 617-627.	1.1	140
35	Does habitat fragmentation reduce fitness and adaptability? A case study of the common frog (Rana) Tj ETQq1	1 0.784314 2.0	rgBT /Overic
36	Identifying footprints of directional and balancing selection in marine and freshwater threeâ€spined	2.0	130

stickleback (<i>Gasterosteus aculeatus</i>) populations. Molecular Ecology, 2008, 17, 3565-3582.

#	Article	IF	CITATIONS
37	Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biology, 2015, 13, 19.	1.7	122
38	GENDER AND ENVIRONMENTAL SENSITIVITY IN NESTLING COLLARED FLYCATCHERS. Ecology, 1998, 79, 1939-1948.	1.5	121
39	Reproductive timing and individual fitness. Ecology Letters, 2002, 5, 802-810.	3.0	121
40	Lifeâ€History Variation Predicts the Effects of Demographic Stochasticity on Avian Population Dynamics. American Naturalist, 2004, 164, 793-802.	1.0	121
41	Genetic relationships among marine and freshwater populations of the European three-spined stickleback (Gasterosteus aculeatus) revealed by microsatellites. Molecular Ecology, 2006, 15, 1519-1534.	2.0	121
42	Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe—Evidence for multiple glacial refugia. Molecular Phylogenetics and Evolution, 2008, 46, 167-182.	1.2	118
43	Rhh: an R extension for estimating multilocus heterozygosity and heterozygosity–heterozygosity correlation. Molecular Ecology Resources, 2010, 10, 720-722.	2.2	117
44	Construction of Ultradense Linkage Maps with Lep-MAP2: Stickleback F ₂ Recombinant Crosses as an Example. Genome Biology and Evolution, 2016, 8, 78-93.	1.1	116
45	Predation mediated population divergence in complex behaviour of nineâ€ s pined stickleback (<i>Pungitius pungitius</i>). Journal of Evolutionary Biology, 2009, 22, 544-552.	0.8	113
46	Evolutionary ecology of intraspecific brain size variation: a review. Ecology and Evolution, 2013, 3, 2751-2764.	0.8	112
47	HISTORICAL DEMOGRAPHY AND PRESENT DAY POPULATION STRUCTURE OF THE GREENFINCH, <i>CARDUEUS CHLORIS </i> -AN ANALYSIS OF mtDNA CONTROL-REGION SEQUENCES. Evolution; International Journal of Organic Evolution, 1997, 51, 946-956.	1.1	111
48	A New Method to Uncover Signatures of Divergent and Stabilizing Selection in Quantitative Traits. Genetics, 2011, 189, 621-632.	1.2	110
49	Characterizing genic and nongenic molecular markers: comparison of microsatellites and <scp>SNP</scp> s. Molecular Ecology Resources, 2013, 13, 377-392.	2.2	110
50	Habitat-dependent and -independent plastic responses to social environment in the nine-spined stickleback (<i>Pungitius pungitius</i>) brain. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2085-2092.	1.2	105
51	High degree of population subdivision in a widespread amphibian. Molecular Ecology, 2004, 13, 2631-2644.	2.0	104
52	Factors affecting avian cross-species microsatellite amplification. Journal of Avian Biology, 2005, 36, 348-360.	0.6	104
53	GEOGRAPHIC VARIATION IN ACID STRESS TOLERANCE OF THE MOOR FROG, RANA ARVALIS. I. LOCAL ADAPTATION. Evolution; International Journal of Organic Evolution, 2003, 57, 352.	1.1	102
54	History vs. habitat type: explaining the genetic structure of European nine-spined stickleback (<i>Pungitius pungitius</i>) populations. Molecular Ecology, 2010, 19, 1147-1161.	2.0	102

#	Article	lF	CITATIONS
55	High degree of cryptic population differentiation in the <scp>B</scp> altic <scp>S</scp> ea herring <i><scp>C</scp>lupea harengus</i> . Molecular Ecology, 2013, 22, 2931-2940.	2.0	101
56	Genetic Variation in Offspring Condition: An Experiment. Functional Ecology, 1996, 10, 465.	1.7	100
57	Extraordinarily rapid speciation in a marine fish. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6074-6079.	3.3	99
58	GLOBAL ANALYSIS OF GENES INVOLVED IN FRESHWATER ADAPTATION IN THREESPINE STICKLEBACKS (<i>GASTEROSTEUS ACULEATUS</i>). Evolution; International Journal of Organic Evolution, 2011, 65, 1800-1807.	1.1	98
59	Archiving Primary Data: Solutions for Long-Term Studies. Trends in Ecology and Evolution, 2015, 30, 581-589.	4.2	98
60	Maternal investment in egg size: environment- and population-specific effects on offspring performance. Oecologia, 2005, 142, 546-553.	0.9	94
61	Progressive Recombination Suppression and Differentiation in Recently Evolved Neo-sex Chromosomes. Molecular Biology and Evolution, 2013, 30, 1131-1144.	3.5	93
62	Maternal and genetic contributions to geographical variation in Rana temporaria larval life-history traits. Biological Journal of the Linnean Society, 0, 76, 61-70.	0.7	92
63	The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Clobal Change Biology, 2005, 11, 1664-1679.	4.2	92
64	Geographic and individual variation in haematozoan infections in the greenfinch, <i>Carduelis chloris</i> . Canadian Journal of Zoology, 1995, 73, 1798-1804.	0.4	90
65	Carry–over effects of ultraviolet–B radiation on larval fitness inRana temporaria. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1699-1706.	1.2	90
66	A High Incidence of Selection on Physiologically Important Genes in the Three-Spined Stickleback, Gasterosteus aculeatus. Molecular Biology and Evolution, 2011, 28, 181-193.	3.5	90
67	When environmental variation short-circuits natural selection. Trends in Ecology and Evolution, 2003, 18, 207-209.	4.2	88
68	Explaining stasis: microevolutionary studies in natural populations. Genetica, 2001, 112-113, 199-222.	0.5	88
69	Predator-induced plasticity in early life history and morphology in two anuran amphibians. Oecologia, 2002, 132, 524-530.	0.9	86
70	Female-Biased Expression on the X Chromosome as a Key Step in Sex Chromosome Evolution in Threespine Sticklebacks. Molecular Biology and Evolution, 2010, 27, 1495-1503.	3.5	86
71	Plasticity in age and size at metamorphosis in <i>Rana temporaria</i> ―comparison of high and low latitude populations. Ecography, 2000, 23, 457-465.	2.1	85
72	EVOLUTION OF GIGANTISM IN NINE-SPINED STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2009, 63, 3190-3200.	1.1	85

#	Article	IF	CITATIONS
73	Molecular evolutionary and population genomic analysis of the nineâ€spined stickleback using a modified restrictionâ€siteâ€associated <scp>DNA</scp> tag approach. Molecular Ecology, 2013, 22, 565-582.	2.0	85
74	Determinants and Consequences of Dispersal in Vertebrates with Complex Life Cycles: A Review of Pond-Breeding Amphibians. Quarterly Review of Biology, 2020, 95, 1-36.	0.0	85
75	Genetic Variation and Causes of Genotype-Environment Interaction in the Body Size of Blue Tit (Parus) Tj ETQq1	0.78431 1.2	4 rgBT /Ove
76	HERITABILITY OF FITNESS COMPONENTS IN A WILD BIRD POPULATION. Evolution; International Journal of Organic Evolution, 2009, 63, 716-726.	1.1	84
77	Adaptive brain size divergence in nineâ€ s pined sticklebacks (<i>Pungitius pungitius</i>)?. Journal of Evolutionary Biology, 2009, 22, 1721-1726.	0.8	84
78	Population variation in brain size of nine-spined sticklebacks (Pungitius pungitius) - local adaptation or environmentally induced variation?. BMC Evolutionary Biology, 2011, 11, 75.	3.2	84
79	GEOGRAPHIC VARIATION IN ACID STRESS TOLERANCE OF THE MOOR FROG, RANA ARVALIS. I. LOCAL ADAPTATION. Evolution; International Journal of Organic Evolution, 2003, 57, 352-362.	1.1	83
80	Interspecific Competition for Nest Holes Causes Adult Mortality in the Collared Flycatcher. Condor, 1995, 97, 445-450.	0.7	82
81	Population genomic evidence for adaptive differentiation in the Baltic Sea herring. Molecular Ecology, 2016, 25, 2833-2852.	2.0	80
82	Comparison of nitrate tolerance between different populations of the common frog, Rana temporaria. Aquatic Toxicology, 2001, 54, 1-14.	1.9	79
83	EXPRESSION OF GENETIC VARIATION IN BODY SIZE OF THE COLLARED FLYCATCHER UNDER DIFFERENT ENVIRONMENTAL CONDITIONS. Evolution; International Journal of Organic Evolution, 1997, 51, 526-536.	1.1	78
84	Molt and Migratory Condition in Blue Tits: A Serological Study. Condor, 1996, 98, 825-831.	0.7	77
85	Temporal variation in predation risk: stage-dependency, graded responses and fitness costs in tadpole antipredator defences. Oikos, 2004, 107, 90-99.	1.2	77
86	HETEROGENEOUS GENOMIC DIFFERENTIATION IN MARINE THREESPINE STICKLEBACKS: ADAPTATION AI ENVIRONMENTAL GRADIENT. Evolution; International Journal of Organic Evolution, 2013, 67, 2530-2546.	-ONG AN	77
87	The Evolution and Adaptive Potential of Transcriptional Variation in Sticklebacks—Signatures of Selection and Widespread Heritability. Molecular Biology and Evolution, 2015, 32, 674-689.	3.5	75
88	QUANTITATIVE GENETICS OF SEXUAL SIZE DIMORPHISM IN THE COLLARED FLYCATCHER, <i>FICEDULA ALBICOLLIS </i> . Evolution; International Journal of Organic Evolution, 1998, 52, 870-876.	1.1	74
89	Population divergence and morphometric integration in the greenfinch (Carduelis chloris) – evolution against the trajectory of least resistance?. Journal of Evolutionary Biology, 1999, 12, 103-112.	0.8	74
90	POPULATION DIFFERENTIATION IN G MATRIX STRUCTURE DUE TO NATURAL SELECTION IN RANA TEMPORARIA. Evolution; International Journal of Organic Evolution, 2004, 58, 2013-2020.	1.1	74

#	Article	IF	CITATIONS
91	Variation in the degree and costs of adaptive phenotypic plasticity among Rana temporaria populations. Journal of Evolutionary Biology, 2004, 17, 1132-1140.	0.8	72
92	On the causes of geographically heterogeneous parallel evolution in sticklebacks. Nature Ecology and Evolution, 2020, 4, 1105-1115.	3.4	72
93	Are Fat Reserves in Migratory Birds Affected by Condition in Early Life?. Journal of Avian Biology, 1997, 28, 279.	0.6	71
94	Environmental and population dependency of genetic variability-fitness correlations in Rana temporaria. Molecular Ecology, 2004, 14, 311-323.	2.0	71
95	Experimental support for the cost–benefit model of lizard thermoregulation: the effects of predation risk and food supply. Oecologia, 2008, 155, 1-10.	0.9	71
96	History vs. current demography: explaining the genetic population structure of the common frog (<i>Rana temporaria</i>). Molecular Ecology, 2006, 15, 975-983.	2.0	70
97	Oceanographic connectivity and environmental correlates of genetic structuring in Atlantic herring in the Baltic Sea. Evolutionary Applications, 2013, 6, 549-567.	1.5	69
98	AMPHIBIAN OCCURRENCE IS INFLUENCED BY CURRENT AND HISTORIC LANDSCAPE CHARACTERISTICS. Ecological Applications, 2007, 17, 2298-2309.	1.8	68
99	Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity, 1999, 83, 103-109.	1.2	68
100	Mass Loss in Breeding Blue Tits: The Role of Energetic Stress. Journal of Animal Ecology, 1997, 66, 452.	1.3	66
101	Testis size variation in the greenfinch Carduelis chloris  : relevance for some recent models of sexual selection. Behavioral Ecology and Sociobiology, 1999, 45, 115-123.	0.6	66
102	Latitudinal and temperature-dependent variation in embryonic development and growth in Rana temporaria. Oecologia, 2003, 135, 548-554.	0.9	65
103	A Bayesian framework for comparative quantitative genetics. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 669-678.	1.2	65
104	Estimating fisheriesâ€induced selection: traditional gear selectivity research meets fisheriesâ€induced evolution. Evolutionary Applications, 2009, 2, 234-243.	1.5	65
105	Local adaptation to salinity in the threeâ€spined stickleback?. Journal of Evolutionary Biology, 2014, 27, 290-302.	0.8	65
106	The effects of 20 years of highway presence on the genetic structure of Rana dalmatina populations. Ecoscience, 2006, 13, 531-538.	0.6	64
107	Nineâ€spined stickleback (<i>Pungitius pungitius</i>): an emerging model for evolutionary biology research. Annals of the New York Academy of Sciences, 2013, 1289, 18-35.	1.8	64
108	The evolution of sex determination associated with a chromosomal inversion. Nature Communications, 2019, 10, 145.	5.8	64

ARTICLE IF CITATIONS Breeding success in Blue Tits: good territories or good parents?. Journal of Avian Biology, 2001, 32, 214-218 Microsatellite marker data suggest sex-biased dispersal in the common frog Rana temporaria. 110 2.0 63 Molecular Ecology, 2004, 13, 2865-2869. Andrew meets Rensch: sexual size dimorphism and the inverse of Rensch's rule in Andrew's toad (Bufo) Tj ETQq1 1 0.78431 Antagonistic natural selection revealed by molecular sex identification of nestling collared 112 2.0 62 flycatchers. Molecular Ecology, 1997, 6, 1167-1175. Quantitative Genetics of Sexual Size Dimorphism in the Collared Flycatcher, Ficedula albicollis. 1.1 Evolution; International Journal of Organic Evolution, 1998, 52, 870. Latitudinal Fractionation of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls in Frogs 114 62 4.6 (Rana temporaria). Environmental Science & amp; Technology, 2002, 36, 5057-5061. Population divergence in growth rate and antipredator defences in Rana arvalis. Oecologia, 2006, 147, 585-595. TIME TO EXTINCTION OF BIRD POPULATIONS. Ecology, 2005, 86, 693-700. 116 1.561 Sex reversal and primary sex ratios in the common frog (<i>Rana temporaria</i>). Molecular Ecology, 2010, 19, 1763-1773. Brain development and predation: plastic responses depend on evolutionary history. Biology Letters, 118 1.0 60 2012, 8, 249-252. Anuran abundance and persistence in agricultural landscapes during a climatic extreme. Global 119 4.2 59 Change Biology, 2007, 13, 300-311. Allen's rule revisited: quantitative genetics of extremity length in the common frog along a 120 0.8 59 latitudinal gradient. Journal of Evolutionary Biology, 2011, 24, 59-70. Adaptive phenotypic plasticity in timing of metamorphosis in the common frog Rana temporaria. 0.6 58 Ecoscience, 2000, 7, 18-24. TOXICITY OF SIX PESTICIDES TO COMMON FROG (RANA TEMPORARIA) TADPOLES. Environmental 122 2.2 58 Toxicology and Chemistry, 2006, 25, 3164. Fat Reserves and Health State in Migrant Goldcrest Regulus regulus. Functional Ecology, 1995, 9, 842. 57 Genetic and maternal effect influences on viability of common frog tadpoles under different 124 1.2 57 environmental conditions. Heredity, 2003, 91, 117-124. What type of amphibian tunnel could reduce road kills?. Oryx, 2004, 38, 220-223. Demographic and Genetic Estimates of Effective Population and Breeding Size in the Amphibian Rana 126 2.4 57 temporaria. Conservation Biology, 2007, 21, 142-151.

3.2

51

#	Article	IF	CITATIONS
127	Indirect genetic effects in a sexâ€ŀimited trait: the case of breeding time in redâ€billed gulls. Journal of Evolutionary Biology, 2010, 23, 935-944.	0.8	57
128	The utility of QTL-Linked markers to detect selective sweeps in natural populations - a case study of the EDA gene and a linked marker in threespine stickleback. Molecular Ecology, 2006, 15, 4613-4621.	2.0	56
129	The impact of climate fluctuation on food availability and reproductive performance of the planktivorous redâ€billed gull <i>Larus novaehollandiae scopulinus</i> . Journal of Animal Ecology, 2008, 77, 1129-1142.	1.3	56
130	Quantitative trait and allozyme divergence in the Greenfinch (Carduelis chloris, Aves: Fringillidae). Biological Journal of the Linnean Society, 1997, 61, 243-266.	0.7	55
131	Adaptive sex ratio variation in pre–industrial human (Homo sapiens) populations?. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 563-568.	1.2	55
132	Sire coloration influences offspring survival under predation risk in the moorfrog. Journal of Evolutionary Biology, 2003, 16, 1288-1295.	0.8	55
133	Historical Demography and Present Day Population Structure of the Greenfinch, Carduelis chloris-An Analysis of mtDNA Control-Region Sequences. Evolution; International Journal of Organic Evolution, 1997, 51, 946.	1.1	54
134	A high-quality assembly of the nine-spined stickleback (Pungitius pungitius) genome. Genome Biology and Evolution, 2019, 11, 3291-3308.	1.1	54
135	The successful founder: genetics of introduced Carduelis chloris (greenfinch) populations in New Zealand. Heredity, 1996, 77, 410-422.	1.2	53
136	Altitudinal decline of body size in a Tibetan frog. Journal of Zoology, 2009, 279, 364-371.	0.8	53
137	Rensch's rule inverted – femaleâ€driven gigantism in nineâ€spined stickleback <i>Pungitius pungitius</i> . Journal of Animal Ecology, 2010, 79, 581-588.	1.3	53
138	Genetics of body shape and armour variation in threespine sticklebacks. Journal of Evolutionary Biology, 2011, 24, 206-218.	0.8	53
139	Fish age at maturation is influenced by temperature independently of growth. Oecologia, 2011, 167, 435-443.	0.9	53
140	<scp>driftsel</scp> : an R package for detecting signals of natural selection in quantitative traits. Molecular Ecology Resources, 2013, 13, 746-754.	2.2	53
141	GEOGRAPHIC VARIATION IN ACID STRESS TOLERANCE OF THE MOOR FROG, RANA ARVALIS. II. ADAPTIVE MATERNAL EFFECTS. Evolution; International Journal of Organic Evolution, 2003, 57, 363.	1.1	52
142	Genetic evidence for maleâ€biased dispersal in the threeâ€spined stickleback (<i>Gasterosteus) Tj ETQq0 0 0 rgB</i>	T /Overloc 2.0	:k 10 Tf 50 1
143	Common Pesticide Increases Costs of Antipredator Defenses in Rana temporaria Tadpoles. Environmental Science & Technology, 2005, 39, 6079-6085.	4.6	51

¹⁴⁴ Increasing melanism along a latitudinal gradient in a widespread amphibian: local adaptation, ontogenic or environmental plasticity?. BMC Evolutionary Biology, 2010, 10, 317.

#	Article	IF	CITATIONS
145	Morphological divergence of North-European nine-spined sticklebacks (Pungitius pungitius): signatures of parallel evolution. Biological Journal of the Linnean Society, 0, 101, 403-416.	0.7	51
146	PREDATION-IMPOSED SELECTION ON THREESPINE STICKLEBACK (GASTEROSTEUS ACULEATUS) MORPHOLOGY: A TEST OF THE REFUGE USE HYPOTHESIS. Evolution; International Journal of Organic Evolution, 2011, 65, 2916-2926.	1.1	51
147	Influence of seasonal time constraints on growth and development of common frog tadpoles: a photoperiod experiment. Oikos, 2001, 95, 451-460.	1.2	50
148	Experimental support for the cost–benefit model of lizard thermoregulation. Behavioral Ecology and Sociobiology, 2006, 60, 405-414.	0.6	50
149	Evidence for adaptive phenotypic differentiation in <scp>B</scp> altic <scp>S</scp> ea sticklebacks. Journal of Evolutionary Biology, 2013, 26, 1700-1715.	0.8	50
150	Genetic biodiversity in the Baltic Sea: species-specific patterns challenge management. Biodiversity and Conservation, 2013, 22, 3045-3065.	1.2	50
151	Evolution of anuran brains: disentangling ecological and phylogenetic sources of variation. Journal of Evolutionary Biology, 2015, 28, 1986-1996.	0.8	50
152	Worldwide phylogeny of three-spined sticklebacks. Molecular Phylogenetics and Evolution, 2018, 127, 613-625.	1.2	50
153	A low rate of cross-species microsatellite amplification success in Ranid frogs. Conservation Genetics, 2002, 3, 445-449.	0.8	49
154	Identification of Local- and Habitat-Dependent Selection: Scanning Functionally Important Genes in Nine-Spined Sticklebacks (Pungitius pungitius). Molecular Biology and Evolution, 2010, 27, 2775-2789.	3.5	49
155	Quantitative genetics of larval life-history traits in Rana temporaria in different environmental conditions. Genetical Research, 2005, 86, 161-170.	0.3	48
156	Variation in number of ventral scales in snakes: effects on body size, growth rate and survival in the adder, <i>Vipera berus</i> . Journal of Zoology, 1993, 230, 101-115.	0.8	47
157	Genetic variation and natural selection on blue tit body condition in different environments. Genetical Research, 1999, 73, 165-176.	0.3	47
158	Phylogeography and Genetic Structuring of European Nine-Spined Sticklebacks (Pungitius) Tj ETQq0 0 0 rgBT /(Overlock 10	0 Tf 50 222 To
159	Whole mitochondrial genome scan for population structure and selection in the Atlantic herring. BMC Evolutionary Biology, 2012, 12, 248.	3.2	47
160	Plumage brightness in relation to haematozoan infections in the greenfinch <i>Carduelis chloris</i> : Bright males are a good bet. Ecoscience, 1999, 6, 12-18.	0.6	46
161	Carry-over effects of embryonic acid conditions on development and growth of Rana temporaria tadpoles. Freshwater Biology, 2002, 47, 19-30.	1.2	46
162	The social cost of shoaling covaries with predation risk in nine-spined stickleback, Pungitius pungitius, populations. Animal Behaviour, 2009, 77, 575-580.	0.8	46

#	Article	IF	CITATIONS
163	Expression of Genetic Variation in Body Size of the Collared Flycatcher Under Different Environmental Conditions. Evolution; International Journal of Organic Evolution, 1997, 51, 526.	1.1	45
164	Contrasting Levels of Variation in Neutral and Quantitative Genetic Loci on Island Populations of Moor Frogs (Rana arvalis). Conservation Genetics, 2006, 8, 45-56.	0.8	45
165	Genetic basis of sexual dimorphism in the threespine stickleback Gasterosteus aculeatus. Heredity, 2011, 106, 218-227.	1.2	45
166	BRINGING HABITAT INFORMATION INTO STATISTICAL TESTS OF LOCAL ADAPTATION IN QUANTITATIVE TRAITS: A CASE STUDY OF NINE-SPINED STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2014, 68, 559-568.	1.1	45
167	Local Adaptation and Genetics of Acid-Stress Tolerance in the Moor Frog, Rana arvalis. Conservation Genetics, 2004, 5, 513-527.	0.8	44
168	Geographic variation in sex hromosome differentiation in the common frog (<i><scp>R</scp>ana) Tj ETQqO O</i>	0.rgBT /O	verlock 10 Tf
169	Inheritance of size and shape in a natural population of collared flycatchers, Ficedula albicollis. Journal of Evolutionary Biology, 1993, 6, 375-395.	0.8	42
170	The Role of Fisheries-Induced Evolution. Science, 2008, 320, 47-50.	6.0	42
171	Hitchhiking Mapping Reveals a Candidate Genomic Region for Natural Selection in Three-Spined Stickleback Chromosome VIII. Genetics, 2008, 178, 453-465.	1.2	42
172	Genomic divergence between nine- and three-spined sticklebacks. BMC Genomics, 2013, 14, 756.	1.2	42
173	Analysis and Interpretation of Long-Term Studies Investigating Responses to Climate Change. Advances in Ecological Research, 2004, 35, 111-130.	1.4	41
174	Environmental stress increases skeletal fluctuating asymmetry in the moor frog Rana arvalis. Oecologia, 2007, 151, 593-604.	0.9	41
175	Seasonality determines patterns of growth and age structure over a geographic gradient in an ectothermic vertebrate. Oecologia, 2012, 170, 641-649.	0.9	41
176	Quantitative genetic analysis of brain size variation in sticklebacks: support for the mosaic model of brain evolution. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151008.	1.2	41
177	Evolutionary potential and constraints in wild populations. , 2014, , 190-208.		41
178	Spatial dynamics of adaptive sex ratios. Ecology Letters, 2000, 3, 30-34.	3.0	40
179	Phenotypic evolution of dispersal-enhancing traits in insular voles. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 225-232.	1.2	40
180	Plasticity in age and size at metamorphosis in Rana temporaria - comparison of high and low latitude populations. Ecography, 2000, 23, 457-465.	2.1	40

#	Article	IF	CITATIONS
181	GENETIC POPULATION STRUCTURE AND GRADUAL NORTHWARD DECLINE OF GENETIC VARIABILITY IN THE GREENFINCH (<i>CARDUELIS CHLORIS</i>). Evolution; International Journal of Organic Evolution, 1996, 50, 2548-2557.	1.1	39
182	Lethal and Sublethal Effects of UV-B/pH Synergism on Common Frog Embryos. Conservation Biology, 2002, 16, 1063-1073.	2.4	39
183	MULTIPLE EVOLUTIONARY PATHWAYS TO DECREASED LATERAL PLATE COVERAGE IN FRESHWATER THREESPINE STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2012, 66, 3866-3875.	1.1	39
184	A phylogenomic perspective on diversity, hybridization and evolutionary affinities in the stickleback genus <i>Pungitius</i> . Molecular Ecology, 2019, 28, 4046-4064.	2.0	39
185	Natural selection and genetic variation for reproductive reaction norms in a wild bird population. Evolution; International Journal of Organic Evolution, 2005, 59, 1362-71.	1.1	39
186	Morphological differentiation in Carduelis finches: Adaptive vs. constraint models. Journal of Evolutionary Biology, 1993, 6, 359-373.	0.8	38
187	Genetic population divergence: markers and traits. Trends in Ecology and Evolution, 2002, 17, 501.	4.2	38
188	Species introduction promotes hybridization and introgression in <i>Coregonus</i> : is there sign of selection against hybrids?. Molecular Ecology, 2011, 20, 3838-3855.	2.0	38
189	Genomewide scan for adaptive differentiation along altitudinal gradient in the Andrew's toad <i>Bufo andrewsi</i> . Molecular Ecology, 2016, 25, 3884-3900.	2.0	38
190	GEOGRAPHIC VARIATION IN MATERNAL INVESTMENT: ACIDITY AFFECTS EGG SIZE AND FECUNDITY IN <i>RANA ARVALIS</i> . Ecology, 2008, 89, 2553-2562.	1.5	37
191	Relatedness and spatial proximity as determinants of host–parasite interactions in the brood parasitic Barrow's goldeneye (<i>Bucephala islandica</i>). Molecular Ecology, 2009, 18, 2713-2721.	2.0	37
192	Sexual patterns of prebreeding energy reserves in the common frog <i>Rana temporaria</i> along a latitudinal gradient. Ecography, 2009, 32, 831-839.	2.1	37
193	Biases in demographic modelling affect our understanding of recent divergence. Molecular Biology and Evolution, 2021, 38, 2967-2985.	3.5	37
194	Population Structure Limits Parallel Evolution in Sticklebacks. Molecular Biology and Evolution, 2021, 38, 4205-4221.	3.5	37
195	Sexual Conf lict and Remarriage in Preindustrial Human Populations Causes and Fitness Consequences. Evolution and Human Behavior, 1998, 19, 139-151.	1.4	36
196	Fitness and feather wear in the Collared Flycatcher Ficedula albicollis. Journal of Avian Biology, 2000, 31, 504-510.	0.6	36
197	Avian Quantitative Genetics. , 2001, , 179-255.		36
198	To thermoconform or thermoregulate? An assessment of thermoregulation opportunities for the lizard Zootoca vivipara in the subarctic. Polar Biology, 2003, 26, 486-490.	0.5	36

#	Article	IF	CITATIONS
199	GEOGRAPHIC VARIATION IN ACID STRESS TOLERANCE OF THE MOOR FROG, RANA ARVALIS. II. ADAPTIVE MATERNAL EFFECTS. Evolution; International Journal of Organic Evolution, 2003, 57, 363-371.	1.1	36

200 Quantitative Genetics of Body Size and Timing of Maturation in Two Nine-Spined Stickleback (Pungitius) Tj ETQq0 0.0 rgBT / gyerlock 10

201	Contrasting population structures in two sympatric fishes in the Baltic Sea basin. Marine Biology, 2012, 159, 1659-1672.	0.7	36
202	Kidney morphology and candidate gene expression shows plasticity in sticklebacks adapted to divergent osmotic environments. Journal of Experimental Biology, 2017, 220, 2175-2186.	0.8	36
203	Platichthys solemdali sp. nov. (Actinopterygii, Pleuronectiformes): A New Flounder Species From the Baltic Sea. Frontiers in Marine Science, 2018, 5, .	1.2	36
204	A sexual conflict in collared flycatchers, Ficedula albicollis: early male moult reduces female fitness. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 2003-2007.	1.2	35
205	Heritability and evolvability of fitness and nonfitness traits: Lessons from livestock. Evolution; International Journal of Organic Evolution, 2016, 70, 1770-1779.	1.1	35
206	The relative importance of lunar phase and environmental conditions on striped marlin (Tetrapturus) Tj ETQq0 0	0 rgBT /Ov	verlock 10 T
207	Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (Pungitius pungitius). BMC Genomics, 2010, 11, 334.	1.2	34
208	Genetic and environmental effects on a conditionâ€dependent trait: feather growth in Siberian jays. Journal of Evolutionary Biology, 2010, 23, 715-723.	0.8	34
209	Genetic Architecture of Parallel Pelvic Reduction in Ninespine Sticklebacks. G3: Genes, Genomes, Genetics, 2013, 3, 1833-1842.	0.8	34
210	Reproductive effort and success are related to haematozoan infections in blue tits. Ecoscience, 1999, 6, 421-428.	0.6	34
211	The postglacial recolonization of Northern Europe by Rana arvalis as revealed by microsatellite and mitochondrial DNA analyses. Heredity, 2009, 102, 174-181.	1.2	33
212	RECOMBINATION RATE BETWEEN SEX CHROMOSOMES DEPENDS ON PHENOTYPIC SEX IN THE COMMON FROG. Evolution; International Journal of Organic Evolution, 2010, 64, 3634-3637.	1.1	33
213	Genetic population structure constrains local adaptation in sticklebacks. Molecular Ecology, 2021, 30, 1946-1961.	2.0	33
214	Female-biased sex ratios in subarctic common frogs. Journal of Zoology, 2008, 275, 57-63.	0.8	32

215	Quantitative trait locus analysis of body shape divergence in nine-spined sticklebacks based on high-density SNP-panel. Scientific Reports, 2016, 6, 26632.	1.6	32
216	Variation in Age and Size in Fennoscandian Three-Spined Sticklebacks (Gasterosteus aculeatus). PLoS ONE, 2013, 8, e80866.	1.1	32

#	Article	IF	CITATIONS
217	Isolation and characterization of polymorphic microsatellite loci in the common frog,Rana temporaria. Molecular Ecology, 2000, 9, 1938-1939.	2.0	31
218	Estimating uncertainty in divergence times among three-spined stickleback clades using the multispecies coalescent. Molecular Phylogenetics and Evolution, 2020, 142, 106646.	1.2	31
219	Ambient ultraviolet-B radiation reduces hatchling size in the common frog Rana temporaria. Ecography, 2000, 23, 531-538.	2.1	31
220	Extensive linkage disequilibrium in a wild bird population. Heredity, 2010, 104, 600-610.	1.2	30
221	Sex-specific fitness consequences of dispersal in Siberian jays. Behavioral Ecology and Sociobiology, 2011, 65, 131-140.	0.6	30
222	High degree of genetic differentiation in marine threeâ€spined sticklebacks (<i><scp>G</scp>asterosteus) Tj ET(</i>	Qq <mark>0 0</mark> 0 rg	BT_/Overlock
223	Identification of Major and Minor QTL for Ecologically Important Morphological Traits in Three-Spined Sticklebacks (<i>Gasterosteus aculeatus</i>). G3: Genes, Genomes, Genetics, 2014, 4, 595-604.	0.8	30
224	Contrasting growth strategies of pond versus marine populations of nine-spined stickleback (Pungitius pungitius): a combined effect of predation and competition?. Evolutionary Ecology, 2012, 26, 109-122.	0.5	29
225	Quantitative trait loci for growth and body size in the nineâ€spined stickleback <i><scp>P</scp>ungitius pungitius </i> <scp>L.</scp> . Molecular Ecology, 2013, 22, 5861-5876.	2.0	29
226	The genetic contribution to sex determination and number of sex chromosomes vary among populations of common frogs (Rana temporaria). Heredity, 2016, 117, 25-32.	1.2	29
227	Offspring number and quality in the blue tit: a quantitative genetic approach. Journal of Zoology, 1995, 237, 615-623.	0.8	28
228	Does testis weight decline towards the Subarctic? A case study on the common frog, Rana temporaria. Die Naturwissenschaften, 2005, 92, 188-192.	0.6	28
229	Disentangling genetic vs. environmental causes of sex determination in the common frog, Rana temporaria. BMC Genetics, 2008, 9, 3.	2.7	28
230	Molecular sexing and population genetic inference using a sex-linked microsatellite marker in the nine-spined stickleback (Pungitius pungitius). BMC Research Notes, 2011, 4, 119.	0.6	28
231	Body size divergence in nine-spined sticklebacks: disentangling additive genetic and maternal effects. Biological Journal of the Linnean Society, 2012, 107, 521-528.	0.7	28
232	Genetic population structure of the endangered fire salamander (<i><scp>S</scp>alamandra) Tj ETQq0 0 0 rgBT 412-421.</i>	/Overlock 1.5	10 Tf 50 14 28
233	Linkage disequilibrium clusteringâ€based approach for association mapping with tightly linked genomewide data. Molecular Ecology Resources, 2018, 18, 809-824.	2.2	28

234Predation-induced effects on hatchling morphology in the common frog (<i>Rana temporaria</i>).0.427Canadian Journal of Zoology, 2001, 79, 926-930.0.427

#	Article	IF	CITATIONS
235	Extreme neutral genetic and morphological divergence supports classification of Adriatic three-spined stickleback (Gasterosteus aculeatus) populations as distinct conservation units. Biological Conservation, 2008, 141, 1055-1066.	1.9	27
236	Growth-history perspective on the decreasing age and size at maturation of exploited Atlantic salmon. Marine Ecology - Progress Series, 2009, 376, 245-252.	0.9	27
237	Effects of ultraviolet-B radiation on common frog Rana temporaria embryos from along a latitudinal gradient. Oecologia, 2002, 133, 458-465.	0.9	26
238	Predation―and competitionâ€mediated brain plasticity in <i>Rana temporaria</i> tadpoles. Journal of Evolutionary Biology, 2010, 23, 2300-2308.	0.8	26
239	Quantitative trait and allozyme divergence in the Greenfinch (Carduelis chloris, Aves: Fringillidae). Biological Journal of the Linnean Society, 1997, 61, 243-266.	0.7	25
240	Effects of ultraviolet-B radiation on behaviour and growth of three species of amphibian larvae. Chemosphere, 2003, 51, 197-204.	4.2	25
241	A flexible whole-genome microarray for transcriptomics in three-spine stickleback (Gasterosteus) Tj ETQq1 1 0.78	4314 rgBT 1.2	lOverlock
242	Intraspecific divergence in the lateral line system in the nineâ€spined stickleback (<i>Pungitius) Tj ETQq0 0 0 rgB1</i>	[Oyerloct	10 Tf 50 4
243	Spectral tuning by selective chromophore uptake in rods and cones of eight populations of nine-spined stickleback (<i>Pungitius pungitius</i>). Journal of Experimental Biology, 2012, 215, 2760-2773.	0.8	25
244	Foster parent experiment reveals no genotype-environment correlation in the external morphology of Ficedula albicollis, the collared flycatcher. Heredity, 1994, 73, 124-129.	1.2	24
245	Complex patterns of geographic variation in heat tolerance and Hsp70 expression levels in the common frog Rana temporaria. Journal of Thermal Biology, 2009, 34, 49-54.	1.1	24
246	Phylogeography of isolated freshwater threeâ€spined stickleback <i>Gasterosteus aculeatus</i> populations in the Adriatic Sea basin. Journal of Fish Biology, 2012, 80, 61-85.	0.7	24
247	A New Species of Microhyla (Anura: Microhylidae) from Nilphamari, Bangladesh. PLoS ONE, 2015, 10, e0119825.	1.1	24
248	Geography of fluctuating asymmetry in the greenfinch, Carduelis chloris. Oikos, 2003, 100, 507-516.	1.2	23
249	Genetic variability predicts common frog (Rana temporaria) size at metamorphosis in the wild. Heredity, 2007, 99, 41-46.	1.2	23
250	Do Great Tits (<i>Parus major)</i> Prefer Ectoparasiteâ€free Roost Sites? An Experiment. Ethology, 1995, 99, 53-60.	0.5	23
251	Brain plasticity over the metamorphic boundary: carry-over effect of larval environment on froglet brain development. Journal of Evolutionary Biology, 2011, 24, 1380-1385.	0.8	23
252	High degree of sex chromosome differentiation in stickleback fishes. BMC Genomics, 2011, 12, 474.	1.2	23

#	Article	IF	CITATIONS
253	Heritability of Asymmetry and Lateral Plate Number in the Threespine Stickleback. PLoS ONE, 2012, 7, e39843.	1.1	23
254	Mitochondrial phylogeography and cryptic divergence in the stickleback genus <i>Pungitius</i> . Journal of Biogeography, 2015, 42, 2334-2348.	1.4	23
255	Predation-induced effects on hatchling morphology in the common frog (Rana temporaria). Canadian Journal of Zoology, 2001, 79, 926-930.	0.4	22
256	Morphological Abnormalities in Amphibians in Agricultural Habitats: A Case Study of the Common Frog Rana Temporaria. Copeia, 2006, 2006, 810-817.	1.4	22
257	Body temperature, size, nuptial colouration and mating success in male Moor Frogs (Rana arvalis). Amphibia - Reptilia, 2009, 30, 37-43.	0.1	22
258	Landscape influences on dispersal behaviour: a theoretical model and empirical test using the fire salamander, Salamandra infraimmaculata. Oecologia, 2014, 175, 509-520.	0.9	22
259	Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback <i>Gasterosteus aculeatus</i> . G3: Genes, Genomes, Genetics, 2017, 7, 165-178.	0.8	22
260	Morphologically indistinguishable hybrid Carassius female with 156 chromosomes: A threat for the threatened crucian carp, C. carassius, L. PLoS ONE, 2018, 13, e0190924.	1.1	22
261	Contrasting Quantitative Traits and Neutral Genetic Markers for Genetic Resource Assessment of Mesoamerican Cedrela Odorata. Silvae Genetica, 2005, 54, 281-292.	0.4	22
262	Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. I. Local adaptation. Evolution; International Journal of Organic Evolution, 2003, 57, 352-62.	1.1	22
263	Evolution of morphological differences with moderate genetic correlations among traits as exemplified by two flycatcher species (Ficedula; Muscicapidae). Biological Journal of the Linnean Society, 1994, 52, 19-30.	0.7	21
264	High cryptic diversity of endemic <i><scp>I</scp>ndirana</i> frogs in the <scp>W</scp> estern <scp>G</scp> hats biodiversity hotspot. Animal Conservation, 2012, 15, 489-498.	1.5	21
265	Transcription and redox enzyme activities: comparison of equilibrium and disequilibrium levels in the three-spined stickleback. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122974.	1.2	21
266	Evidence for sexâ€specific selection in brain: a case study of the nineâ€spined stickleback. Journal of Evolutionary Biology, 2014, 27, 1604-1612.	0.8	21
267	Environmental enrichment, sexual dimorphism, and brain size in sticklebacks. Ecology and Evolution, 2017, 7, 1691-1698.	0.8	21
268	Automated improvement of stickleback reference genome assemblies with <scp>Lepâ€Anchor</scp> software. Molecular Ecology Resources, 2021, 21, 2166-2176.	2.2	21
269	Patterns of natural selection on morphology of male and female collared flycatchers (Ficedula) Tj ETQq1 1 0.784	-314 rgBT 0.7	/Overlock 10
270	Effective size of an Atlantic salmon (Salmo salar L.) metapopulation in Northern Spain. Conservation Genetics, 2010, 11, 1559-1565.	0.8	20

#	Article	IF	CITATIONS
271	High levels of fluctuating asymmetry in isolated stickleback populations. BMC Evolutionary Biology, 2012, 12, 115.	3.2	20
272	Deciphering the genomic architecture of the stickleback brain with a novel multilocus geneâ€mapping approach. Molecular Ecology, 2017, 26, 1557-1575.	2.0	20
273	Phylogeographic patterns and conservation implications of the endangered Chinese giant salamander. Ecology and Evolution, 2019, 9, 3879-3890.	0.8	20
274	The roles of climate, geography and natural selection as drivers of genetic and phenotypic differentiation in a widespread amphibian <i>Hyla annectans</i> (Anura: Hylidae). Molecular Ecology, 2020, 29, 3667-3683.	2.0	20
275	Effects of ultraviolet-B radiation and pH on early development of the moor frog Rana arvalis. Journal of Applied Ecology, 2001, 38, 628-636.	1.9	19
276	Effects of ultraviolet-B radiation on metamorphic traits in the common frog Rana temporaria. Journal of Zoology, 2003, 259, 57-62.	0.8	19
277	The role of growth history in determining age and size at maturation in exploited fish populations. Fish and Fisheries, 2008, 9, 201-207.	2.7	19
278	Multilocus heterozygosity and inbreeding in the Siberian jay. Conservation Genetics, 2009, 10, 605-609.	0.8	19
279	Microsatellite variation and population structure of the moor frog (<i>Rana arvalis</i>) in Scandinavia. Molecular Ecology, 2009, 18, 2996-3005.	2.0	19
280	QTL Analysis of Behavior in Nine-Spined Sticklebacks (Pungitius pungitius). Behavior Genetics, 2014, 44, 77-88.	1.4	19
281	FishResp: R package and GUI application for analysis of aquatic respirometry data. , 2019, 7, coz003.		19
282	Geographic Variation in Age Structure and Longevity in the Nine-Spined Stickleback (Pungitius) Tj ETQq0 0 0 rgE	3T /Oyerlo 1.1	ck 19 Tf 50 3
283	Prediction of offspring fitness based on parental genetic diversity in endangered salmonid populations. Journal of Fish Biology, 2003, 63, 909-927.	0.7	18
284	Genomic and chemical evidence for local adaptation in resistance to different herbivores in <i>Datura stramonium</i> . Evolution; International Journal of Organic Evolution, 2020, 74, 2629-2643.	1.1	18
285	Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. II. Adaptive maternal effects. Evolution; International Journal of Organic Evolution, 2003, 57, 363-71.	1.1	18
286	NATURAL SELECTION AND INHERITANCE OF BREEDING TIME AND CLUTCH SIZE IN THE COLLARED FLYCATCHER. Evolution; International Journal of Organic Evolution, 2003, 57, 406.	1.1	17
287	Suboptimal thermoregulation in male adders (Vipera berus) after hibernation imposed by spermiogenesis. Biological Journal of the Linnean Society, 2007, 92, 19-27.	0.7	17
288	Isolation and characterization of 145 polymorphic microsatellite loci for the common frog (<i>Rana) Tj ETQq0 0</i>	0 rgBT /0	verlock 10 Tf

#	Article	IF	CITATIONS
289	Inheritance of Vertebral Number in the Three-Spined Stickleback (Gasterosteus aculeatus). PLoS ONE, 2011, 6, e19579.	1.1	17
290	First-generation linkage map for the common frog Rana temporaria reveals sex-linkage group. Heredity, 2011, 107, 530-536.	1.2	17
291	Evolution of stickleback feeding behaviour: genetics of population divergence at different ontogenetic stages. Journal of Evolutionary Biology, 2013, 26, 955-962.	0.8	17
292	Experimental evidence for sex-specific plasticity in adult brain. Frontiers in Zoology, 2015, 12, 38.	0.9	17
293	Population transcriptomics reveals weak parallel genetic basis in repeated marine and freshwater divergence in nineâ€spined sticklebacks. Molecular Ecology, 2020, 29, 1642-1656.	2.0	17
294	Genomic Evidence for Speciation with Gene Flow in Broadcast Spawning Marine Invertebrates. Molecular Biology and Evolution, 2021, 38, 4683-4699.	3.5	17
295	The role of fisheries-induced evolution. Science, 2008, 320, 47-50; author reply 47-50.	6.0	17
296	Intersexual niche differentiation in the blue tit (Parus caeruleus). Biological Journal of the Linnean Society, 2000, 69, 233-244.	0.7	16
297	POPULATION DIFFERENTIATION IN G MATRIX STRUCTURE DUE TO NATURAL SELECTION IN RANA TEMPORARIA. Evolution; International Journal of Organic Evolution, 2004, 58, 2013.	1.1	16
298	Isolation and characterization of 100 polymorphic microsatellite loci for the Siberian jay (<i>Perisoreus infaustus</i>). Molecular Ecology Resources, 2008, 8, 1469-1474.	2.2	16
299	Genetic evidence for maleâ€biased dispersal in the Siberian jay (<i>Perisoreus infaustus</i>) based on autosomal and Zâ€chromosomal markers. Molecular Ecology, 2010, 19, 5281-5295.	2.0	16
300	Physiological differentiation among nine-spined stickleback populations: Effects of copper exposure. Aquatic Toxicology, 2010, 98, 188-195.	1.9	16
301	Population differences in levels of linkage disequilibrium in the wild. Molecular Ecology, 2011, 20, 2916-2928.	2.0	16
302	Development of 61 new transcriptome-derived microsatellites for the Atlantic herring (Clupea) Tj ETQq0 0 0 rgBT	Qverlock	2 10 Tf 50 22
303	Thermal conditions predict intraspecific variation in senescence rate in frogs and toads. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
304	Sex differences in age structure, growth rate and body size of common frogs Rana temporaria in the subarctic. Polar Biology, 2012, 35, 1505-1513.	0.5	15
305	Kin association during brood care in a facultatively social bird: active discrimination or byâ€product of partner choice and demography?. Molecular Ecology, 2012, 21, 3341-3351.	2.0	15
306	Temporal Stability of Genetic Variability and Differentiation in the Three-Spined Stickleback (Gasterosteus aculeatus). PLoS ONE, 2015, 10, e0123891.	1.1	15

#	Article	IF	CITATIONS
307	Effects of perceived predation risk and social environment on the development of three-spined stickleback (<i>Gasterosteus aculeatus</i>) morphology. Biological Journal of the Linnean Society, 2016, 118, 520-535.	0.7	15
308	On plasticity of aggression: influence of past and present predation risk, social environment and sex. Behavioral Ecology and Sociobiology, 2016, 70, 179-187.	0.6	15
309	The role of landscape and history on the genetic structure of peripheral populations of the Near Eastern fire salamander, Salamandra infraimmaculata, in Northern Israel. Conservation Genetics, 2019, 20, 875-889.	0.8	15
310	Extrapair Paternity and Maternity in the Three-Toed Woodpecker, Picoides tridactylus: Insights from Microsatellite-Based Parentage Analysis. PLoS ONE, 2009, 4, e7895.	1.1	14
311	Multiple paternity in the moor frog, Rana arvalis. Amphibia - Reptilia, 2009, 30, 515-521.	0.1	14
312	Lunar periodicity and the timing of river entry in Atlantic salmon <i>Salmo salar</i> . Journal of Fish Biology, 2009, 74, 2401-2408.	0.7	14
313	Evidence for genetic differentiation in timing of maturation among nineâ€spined stickleback populations. Journal of Evolutionary Biology, 2013, 26, 775-782.	0.8	14
314	Population divergence in compensatory growth responses and their costs in sticklebacks. Ecology and Evolution, 2015, 5, 7-23.	0.8	14
315	A universal and reliable assay for molecular sex identification of threeâ€spined sticklebacks (<i>Gasterosteus aculeatus</i>). Molecular Ecology Resources, 2016, 16, 1389-1400.	2.2	14
316	Complete mitochondrial genome sequence of the Himalayan Griffon, <i>Gyps himalayensis</i> (Accipitriformes: Accipitridae): Sequence, structure, and phylogenetic analyses. Ecology and Evolution, 2019, 9, 8813-8828.	0.8	14
317	Genetic Populations Structure and Gradual Northward Decline of Genetic Variability in the Greenfinch (Carduelis chloris). Evolution; International Journal of Organic Evolution, 1996, 50, 2548.	1.1	13
318	DOES JELLY ENVELOPE PROTECT THE COMMON FROG RANA TEMPORARIA EMBRYOS FROM UV-B RADIATION?. Herpetologica, 2003, 59, 293-300.	0.2	13
319	Sex-specific population structure, natural selection, and linkage disequilibrium in a wild bird population as revealed by genome-wide microsatellite analyses. BMC Evolutionary Biology, 2010, 10, 66.	3.2	13
320	Sequence Variation in the Melanocortin-1 Receptor Gene (<i>Mc1r</i>) Does Not Explain Variation in the Degree of Melanism in a Widespread Amphibian. Annales Zoologici Fennici, 2010, 47, 37-45.	0.2	13
321	Genetic variation and differentiation in Indirana beddomii frogs endemic to the Western Ghats biodiversity hotspot. Conservation Genetics, 2012, 13, 1459-1467.	0.8	13
322	The role of golf courses in maintaining genetic connectivity between common frog (Rana temporaria) populations in an urban setting. Conservation Genetics, 2013, 14, 1057-1064.	0.8	13
323	Genome-Wide Linkage Disequilibrium in Nine-Spined Stickleback Populations. C3: Genes, Genomes, Genetics, 2014, 4, 1919-1929.	0.8	13
324	Disentangling plastic and genetic changes in body mass of <scp>S</scp> iberian jays. Journal of Evolutionary Biology, 2014, 27, 1849-1858.	0.8	13

#	Article	IF	CITATIONS
325	Age at maturation has sex- and temperature-specific effects on telomere length in a fish. Oecologia, 2017, 184, 767-777.	0.9	13
326	Tail loss and thermoregulation in the common lizard Zootoca vivipara. Die Naturwissenschaften, 2004, 91, 485-488.	0.6	12
327	Maternally determined adaptation to acidity in <i>Rana arvalis</i> : Are laboratory and field estimates of embryonic stress tolerance congruent?. Canadian Journal of Zoology, 2007, 85, 832-838.	0.4	12
328	Genetic Constraints on Adaptation?. Science, 2009, 325, 1212-1213.	6.0	12
329	Temporal increase in mtDNA diversity in a declining population. Molecular Ecology, 2010, 19, no-no.	2.0	12
330	Differential responses to related hosts by nesting and nonâ€nesting parasites in a broodâ€parasitic duck. Molecular Ecology, 2011, 20, 5328-5336.	2.0	12
331	Morphological anti-predator defences in the nine-spined stickleback: constitutive, induced or both?. Biological Journal of the Linnean Society, 2012, 107, 854-866.	0.7	12
332	Large differences in catch per unit of effort between two minnow trap models. BMC Research Notes, 2013, 6, 151.	0.6	12
333	A New Species of Euphlyctis (Anura: Dicroglossidae) from Barisal, Bangladesh. PLoS ONE, 2015, 10, e0116666.	1.1	12
334	Effects of marker type and filtering criteria on <i>Q</i> _{ST} - <i>F</i> _{ST} comparisons. Royal Society Open Science, 2019, 6, 190666.	1.1	12
335	Do Scale Anomalies Cause Differential Survival in Vipera berus?. Journal of Herpetology, 1994, 28, 435.	0.2	11
336	Temporal Stability and Microgeographic Homogeneity of Heritability Estimates in a Natural Bird Population. Journal of Heredity, 1996, 87, 199-204.	1.0	11
337	A simple RFLP method for identification of two ranid frogs. Conservation Genetics, 2003, 4, 801-803.	0.8	11
338	Do male moor frogs (<i>Rana arvalis</i>) lek with kin?. Molecular Ecology, 2008, 17, 2522-2530.	2.0	11
339	Male breeding success is predicted by call frequency in a territorial species, the agile frog (<i>Rana) Tj ETQq1 1 (</i>).784314 0.4	rgBT_/Overloo
340	No evidence for inbreeding avoidance through active mate choice in red-billed gulls. Behavioral Ecology, 2012, 23, 672-675.	1.0	11
341	Mechanism of hybridization between bream <i>Abramis brama</i> and roach <i>Rutilus rutilus</i> in their native range. Journal of Fish Biology, 2014, 84, 237-242.	0.7	11
342	Modulation of Gene Expression in Liver of Hibernating Asiatic Toads (Bufo gargarizans). International Journal of Molecular Sciences, 2018, 19, 2363.	1.8	11

#	Article	IF	CITATIONS
343	Mass-Dependent Mass Loss in Breeding Birds: Getting the Null Hypothesis Right. Oikos, 1999, 87, 191.	1.2	10
344	Sixty-two new microsatellite markers for an endemic frog Indirana beddomii from the Western Ghats biodiversity hotspot. Conservation Genetics Resources, 2011, 3, 167-171.	0.4	10
345	EndemicIndiranaFrogs of the Western Ghats Biodiversity Hotspot. Annales Zoologici Fennici, 2012, 49, 257-286.	0.2	10
346	Cross-species testing and utility of microsatellite loci in Indirana frogs. BMC Research Notes, 2012, 5, 389.	0.6	10
347	Genetic Variability and Structuring of Arctic Charr (Salvelinus alpinus) Populations in Northern Fennoscandia. PLoS ONE, 2015, 10, e0140344.	1.1	10
348	Does predation drive morphological differentiation among Adriatic populations of the three-spined stickleback?. Biological Journal of the Linnean Society, 2015, 115, 219-240.	0.7	10
349	Perplexing effects of phenotypic plasticity. Nature, 2015, 525, 326-327.	13.7	10
350	Solutions for Archiving Data in Long-Term Studies: A Reply to Whitlock et al Trends in Ecology and Evolution, 2016, 31, 85-87.	4.2	10
351	From ecology to genetics and back: the tale of two flounder species in the Baltic Sea. ICES Journal of Marine Science, 2019, 76, 2267-2275.	1.2	10
352	Cryptic temporal changes in stock composition explain the decline of a flounder (Platichthysspp.) assemblage. Evolutionary Applications, 2019, 12, 549-559.	1.5	10
353	Life-History Variation Predicts the Effects of Demographic Stochasticity on Avian Population Dynamics. American Naturalist, 2004, 164, 793.	1.0	10
354	WWW design code - a new tool for colour estimation in animal studies. Frontiers in Zoology, 2004, 1, 2.	0.9	9
355	Genome size variation in the common frog Rana temporaria. Hereditas, 2006, 143, 155-158.	0.5	9
356	Body size and the number of vertebrae in the nine-spined stickleback (Pungitius pungitius). Biological Journal of the Linnean Society, 2011, 104, 378-385.	0.7	9
357	Isolation and Characterization of 13 New Nine-Spined Stickleback, <i>Pungitius pungitius</i> , Microsatellites Located Nearby Candidate Genes for Behavioural Variation. Annales Zoologici Fennici, 2012, 49, 123-128.	0.2	9
358	Crossâ€generational costs of compensatory growth in nineâ€spined sticklebacks. Oikos, 2014, 123, 1489-1498.	1.2	9
359	Origin and introduction history of the least weasel (Mustela nivalis) on Mediterranean and Atlantic islands inferred from genetic data. Biological Invasions, 2017, 19, 399-421.	1.2	9
360	Selection on the morphology–physiologyâ€performance nexus: Lessons from freshwater stickleback morphs. Ecology and Evolution, 2018, 8, 1286-1299.	0.8	9

#	Article	IF	CITATIONS
361	Ambient ultravioletâ€B radiation reduces hatchling size in the common frog Rana temporaria. Ecography, 2000, 23, 531-538.	2.1	8
362	Optimal growth strategies under divergent predation pressure. Journal of Fish Biology, 2013, 82, 318-331.	0.7	8
363	Heterochronic development of lateral plates in the three-spined stickleback induced by thyroid hormone level alterations. PLoS ONE, 2018, 13, e0194040.	1.1	8
364	Phenotypic flexibility in background-mediated color change in sticklebacks. Behavioral Ecology, 2020, 31, 950-959.	1.0	8
365	Consistent isotopic differences between Schistocephalus spp. parasites and their stickleback hosts. Diseases of Aquatic Organisms, 2015, 115, 121-128.	0.5	8
366	Phylogenomics of Northeast Asian <i>Pungitius</i> sticklebacks. Diversity and Distributions, 2022, 28, 2610-2621.	1.9	8
367	High Frequency of Ventral Scale Anomalies in Vipera berus Populations. Copeia, 1992, 1992, 1127.	1.4	7
368	lt's the genotype, stupid!. Journal of Animal Breeding and Genetics, 2009, 126, 1-2.	0.8	7
369	Potential effects of climate change on the distribution of the common frog Rana temporaria at its northern range margin. Israel Journal of Ecology and Evolution, 2013, 59, 130-140.	0.2	7
370	Variation in sexual brain size dimorphism over the breeding cycle in the three-spined stickleback. Journal of Experimental Biology, 2019, 222, .	0.8	7
371	Habitat segregation of plate phenotypes in a rapidly expanding population of threeâ€spined stickleback. Ecosphere, 2021, 12, e03561.	1.0	7
372	A New Species of Frog (Anura: Dicroglossidae) Discovered from the Mega City of Dhaka. PLoS ONE, 2016, 11, e0149597.	1.1	7
373	Sexâ€related differences in aging rate are associated with sex chromosome system in amphibians. Evolution; International Journal of Organic Evolution, 2022, 76, 346-356.	1.1	7
374	Fluctuating Asymmetry and Measurement Error. Systematic Biology, 1995, 44, 97.	2.7	6
375	High Fidelity – No Evidence for Extra-Pair Paternity in Siberian Jays (Perisoreus infaustus). PLoS ONE, 2010, 5, e12006.	1.1	6
376	Effective size and genetic composition of two exploited, migratory whitefish (Coregonus lavaretus) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 5
377	Cast Away in the Adriatic: Low Degree of Parallel Genetic Differentiation in Threeâ€Spined Sticklebacks. Molecular Ecology, 2021	2.0	6

378ADAPTIVE PHENOTYPIC PLASTICITY AND GENETICS OF LARVAL LIFE HISTORIES IN TWO RANA TEMPORARIA
POPULATIONS. Evolution; International Journal of Organic Evolution, 2002, 56, 617.1.15

#	Article	IF	CITATIONS
379	Effects of predator exposure on Hsp70 expression and survival in tadpoles of the Common Frog (RanaÂtemporaria). Canadian Journal of Zoology, 2011, 89, 1249-1255.	0.4	5
380	Factors influencing nine-spined stickleback (Pungitus pungitus)trapping success. Annales Zoologici Fennici, 2012, 49, 350-354.	0.2	5
381	Lakes and ponds as model systems to study parallel evolution. Journal of Limnology, 2014, 73, .	0.3	5
382	Comparison of catch per unit effort among four minnow trap models in the three-spined stickleback (Gasterosteus aculeatus) fishery. Scientific Reports, 2016, 5, 18548.	1.6	5
383	Complete mitochondrial genome of the nine-spined stickleback <i>Pungitius pungitius</i> (Gasterosteiformes, Gasterosteidae). Mitochondrial DNA Part B: Resources, 2016, 1, 72-73.	0.2	5
384	Taxonomic status and origin of the Egyptian weasel (Mustela subpalmata) inferred from mitochondrial DNA. Genetica, 2016, 144, 191-202.	0.5	5
385	Small-scale spatial and temporal variation of life-history traits of common frogs (Rana temporaria) in sub-Arctic Finland. Polar Biology, 2017, 40, 1581-1592.	0.5	5
386	Structure and stability of genetic variance–covariance matrices: A Bayesian sparse factor analysis of transcriptional variation in the threeâ€spined stickleback. Molecular Ecology, 2017, 26, 5099-5113.	2.0	5
387	Cannibalism facilitates gigantism in a nineâ€spined stickleback (<i>Pungitius pungitius</i>) population. Ecology of Freshwater Fish, 2017, 26, 686-694.	0.7	5
388	Aging threeâ€spined sticklebacks <i>Gasterosteus aculeatus</i> : comparison of estimates from three structures . Journal of Fish Biology, 2019, 95, 802-811.	0.7	5
389	Examining the effects of authentic C&R on the reproductive potential of Northern pike. Fisheries Research, 2021, 243, 106068.	0.9	5
390	Genomic evidence for adaptive differentiation among <i>Microhyla fissipes</i> populations: Implications for conservation. Diversity and Distributions, 2022, 28, 2665-2680.	1.9	5
391	Isolation and characterization of 22 polymorphic microsatellite loci for the Barrow's goldeneye (<i>Bucephala islandica</i>). Molecular Ecology Resources, 2009, 9, 806-808.	2.2	4
392	Factors influencing three-spined stickleback GasterosteusÂaculeatus (Linnaeus 1758) catch per unit effort. Journal of Applied Ichthyology, 2015, 31, 905-908.	0.3	4
393	Phylogeography and historical introgression in smoothtail nine-spined sticklebacks, Pungitius laevis (Gasterosteiformes: Gasterosteidae). Biological Journal of the Linnean Society, 2017, 121, 340-354.	0.7	4
394	Effects of ambient temperatures on evolutionary potential of reproductive timing in boreal passerines. Journal of Animal Ecology, 2021, 90, 367-375.	1.3	4
395	Probabilistic Models for Continuous Ontogenetic Transition Processes. PLoS ONE, 2008, 3, e3677.	1.1	4
396	NATURAL SELECTION AND GENETIC VARIATION FOR REPRODUCTIVE REACTION NORMS IN A WILD BIRD POPULATION. Evolution; International Journal of Organic Evolution, 2005, 59, 1362.	1.1	3

#	Article	IF	CITATIONS
397	Evidence for Multiple Retroposition Events and Gene Evolution in the ADP/ATP Translocase Gene Family in Ranid Frogs. Journal of Heredity, 2007, 98, 300-310.	1.0	3
398	Isolation and characterization of 17 polymorphic microsatellite loci for the threeâ€ŧoed woodpecker (<i>Picoides tridactylus</i>). Molecular Ecology Resources, 2008, 8, 1152-1154.	2.2	3
399	First Record of Natural Hybridization and Introgression between Pikeperch (<i>Sander lucioperca</i>) and Perch (<i>Perca fluviatilis</i>). Annales Zoologici Fennici, 2011, 48, 39-44.	0.2	3
400	Asymmetry in threespine stickleback lateral plates. Journal of Zoology, 2013, 289, 279-284.	0.8	3
401	Baiting improves CPUE in nineâ€spined stickleback (P ungitius pungitius) minnow trap fishery. Ecology and Evolution, 2015, 5, 3737-3742.	0.8	3
402	Effects of temperature on growth and development of amphibian larvae across an altitudinal gradient in the Tibetan Plateau. Animal Biology, 2020, 70, 239-250.	0.6	3
403	Age-dependent genetic architecture across ontogeny of body size in sticklebacks. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220352.	1.2	3
404	Post-juvenile body moult in the Blue TitParus caeruleus: influence of age and nestling history. Bird Study, 1998, 45, 353-360.	0.4	2
405	Avian Z-specific microsatellites map to pseudoautosomal or autosomal chromosomes in the Siberian jay (Perisoreus infaustus): insights into avian genome evolution from cross-species amplification tests. Journal of Genetics, 2010, 89, 223-228.	0.4	2
406	Isolation and characterization of 113 polymorphic microsatellite loci for the Tibetan frog (Nanorana) Tj ETQq0 0	0 rgBT /Ov 0.4	verlock 10 Tf
407	Complete mitochondrial genome of the Greek nine-spined stickleback Pungitius hellenicus (Gasterosteiformes, Gasterosteidae). Mitochondrial DNA Part B: Resources, 2016, 1, 66-67.	0.2	2
408	Complete mitochondrial genomes of the smooth tail nine-spined sticklebacks Pungitius laevis (Gasterosteiformes, Gasterosteidae). Mitochondrial DNA Part B: Resources, 2016, 1, 70-71.	0.2	2
409	Evolutionary Responses to Climate Change. , 2018, , 51-59.		2
410	Intersexual niche differentiation in the blue tit (Parus caeruleus). Biological Journal of the Linnean Society, 2000, 69, 233-244.	0.7	2
411	Facultative Sex Allocation and Sexâ€5pecific Offspring Survival in <scp>B</scp> arrow's Goldeneyes. Ethology, 2013, 119, 146-155.	0.5	1
412	A test for withinâ€lake niche differentiation in the nineâ€spined sticklebacks (<i>Pungitius pungitius</i>). Ecology and Evolution, 2016, 6, 4753-4760.	0.8	1
413	Complete mitochondrial genome of the Ukrainian nine-spined stickleback Pungitius platygaster (Gasterosteiformes, Gasterosteidae). Mitochondrial DNA Part B: Resources, 2016, 1, 68-69.	0.2	1
414	Complete mitochondrial genome of the Sakhalin nine-spined stickleback Pungitius tymensis (Gasterosteiformes, Gasterosteidae). Mitochondrial DNA Part B: Resources, 2016, 1, 74-75.	0.2	1

#	Article	IF	CITATIONS
415	Cranial osteology of <i>Hypoptophis</i> (Aparallactinae: Atractaspididae: Caenophidia), with a discussion on the evolution of its fossorial adaptations. Journal of Morphology, 2022, 283, 510-538.	0.6	1
416	Birds unlimited. Nature, 1999, 401, 16-16.	13.7	0
417	Quantitative genetic analysis of natural populations: old wine in a new but defective bottle?. Nature Reviews Genetics, 2002, 3, 980-980.	7.7	0
418	Heritability not missing-genetic basis of sexual weaponry uncovered. Molecular Ecology, 2011, 20, 2468-2470.	2.0	0
419	OBSOLETE: Evolution in response to climate change. , 2018, , .		0
420	Explaining stasis: Microevolutionary studies in natural populations. Contemporary Issues in Genetics and Evolution, 2001, , 199-222.	0.9	0
421	Allopatric origin of sympatric whitefish morphs with insights on the genetic basis of their reproductive isolation. Evolution; International Journal of Organic Evolution, 2022, 76, 1905-1913.	1.1	0