List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2209444/publications.pdf Version: 2024-02-01

LINC-EALL

#	Article	IF	CITATIONS
1	High Electrochemical Performance of Monodisperse NiCo ₂ O ₄ Mesoporous Microspheres as an Anode Material for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 981-988.	8.0	709
2	A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale, 2013, 5, 2045.	5.6	445
3	Ultrathin Î-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochimica Acta, 2019, 304, 370-377.	5.2	207
4	Hollow MnCo ₂ O ₄ Submicrospheres with Multilevel Interiors: From Mesoporous Spheres to Yolk-in-Double-Shell Structures. ACS Applied Materials & Interfaces, 2014, 6, 24-30.	8.0	187
5	Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. Journal of Materials Chemistry A, 2013, 1, 15292.	10.3	151
6	Spinel Mn1.5Co1.5O4 core–shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity. Journal of Materials Chemistry, 2012, 22, 23254.	6.7	140
7	Mesoporous NiO ultrathin nanowire networks topotactically transformed from α-Ni(OH)2 hierarchical microspheres and their superior electrochemical capacitance properties and excellent capability for water treatment. Journal of Materials Chemistry, 2012, 22, 14276.	6.7	139
8	Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review. Journal of Energy Chemistry, 2021, 54, 434-451.	12.9	136
9	Formation of quasi-mesocrystal ZnMn ₂ O ₄ twin microspheres via an oriented attachment for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 14236-14244.	10.3	89
10	The Application of Redox Targeting Principles to the Design of Rechargeable Li–S Flow Batteries. Advanced Energy Materials, 2015, 5, 1501808.	19.5	86
11	A case study of β- and δ-MnO2 with different crystallographic forms on ion-storage in rechargeable aqueous zinc ion battery. Electrochimica Acta, 2019, 324, 134867.	5.2	64
12	Constructing αâ€MnO2@PPy core-shell nanorods towards enhancing electrochemical behaviors in aqueous zinc ion battery. Materials Letters, 2020, 262, 127180.	2.6	64
13	Halide Perovskite Materials for Energy Storage Applications. Advanced Functional Materials, 2020, 30, 2003653.	14.9	63
14	Porous Heteroatom-Doped Ti ₃ C ₂ T _{<i>x</i>} MXene Microspheres Enable Strong Adsorption of Sodium Polysulfides for Long-Life Room-Temperature Sodium–Sulfur Batteries. ACS Nano, 2021, 15, 16207-16217.	14.6	46
15	Elementâ€Ðoped Mxenes: Mechanism, Synthesis, and Applications. Small, 2022, 18, e2201740.	10.0	43
	General synthesis of xLi ₂ MnO ₃ ·(1 â^') Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 152 Td (x)LiNi <sub< td=""><td>>1/3C</td></sub<>	>1/3C
16	microspheres towards enhancing the performance of rechargeable lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 12442-12450.	10.3	38
17	Facilely fabricating FeSe nanoparticles embedded in N-doped carbon towards promoting sodium storage behaviors. Journal of Power Sources, 2020, 449, 227517.	7.8	36
18	A precursor route to synthesize mesoporous γ-MnO2 microcrystals and their applications in lithium battery and water treatment. Journal of Alloys and Compounds, 2011, 509, 9542-9548.	5.5	33

#	Article	IF	CITATIONS
19	Stable alkali metal anodes enabled by crystallographic optimization – a review. Journal of Materials Chemistry A, 2021, 9, 20957-20984.	10.3	32
20	Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis. Scientific Reports, 2016, 6, 35893.	3.3	30
21	Effect of Ni content in Ni Mn1-CO3 (xÂ= 0, 0.20, 0.25, 0.33) submicrospheres on the performances of rechargeable lithium ion batteries. Electrochimica Acta, 2018, 276, 333-342.	5.2	28
22	MnCO3 Microstructures Assembled with Nanoparticles: Shape-Controlled Synthesis and Their Application for Li-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2012, 12, 7334-7338.	0.9	27
23	An aqueous rechargeable zinc-ion battery on basis of an organic pigment. Rare Metals, 2022, 41, 2230-2236.	7.1	26
24	Combined mediator and electrochemical charging and discharging of redox targeting lithium-sulfur flow batteries. Materials Today Energy, 2017, 5, 15-21.	4.7	24
25	Recent Progress and Challenges of Microâ€∤Nanostructured Transition Metal Carbonate Anodes for Lithium Ion Batteries. European Journal of Inorganic Chemistry, 2018, 2018, 4508-4521.	2.0	23
26	Molecular Engineering of the Lead Iodide Perovskite Surface: Case Study on Molecules with Pyridyl Groups. Journal of Physical Chemistry C, 2017, 121, 24612-24617.	3.1	20
27	Doping bismuth oxyhalides with Indium: A DFT calculations on tuning electronic and optical properties. Chemical Physics Letters, 2018, 705, 31-37.	2.6	20
28	Surfacing amorphous Ni–B nanoflakes on NiCo ₂ O ₄ nanospheres as multifunctional bridges for promoting lithium storage behaviors. Nanoscale, 2019, 11, 22550-22558.	5.6	20
29	Hybridized S cathode with N719 dye for a photo-assisted charging Li-S battery. Journal of Energy Chemistry, 2022, 65, 205-209.	12.9	18
30	Engineering Zn _{0.33} Co _{0.67} S Hollow Microspheres with Enhanced Electrochemical Performance for Lithium and Sodium Ion Batteries. European Journal of Inorganic Chemistry, 2018, 2018, 3036-3040.	2.0	16
31	Promoting the Na+-storage of NiCo2S4 hollow nanospheres by surfacing Ni–B nanoflakes. Journal of Materials Science and Technology, 2021, 82, 114-121.	10.7	16
32	Dual-functional iodine photoelectrode enabling high performance photo-assisted rechargeable lithium iodine batteries. Journal of Materials Chemistry A, 2022, 10, 7326-7332.	10.3	15
33	Theoretical investigations on crystal crosslinking in perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 234-241.	5.5	14
34	Investigation of germanium selenide electrodes for the integrated photoâ€rechargeable battery. International Journal of Energy Research, 2020, 44, 6015-6022.	4.5	14
35	Theoretical investigation on interactions between lithium ions and two-dimensional halide perovskite for solar-rechargeable batteries. Applied Surface Science, 2021, 541, 148509.	6.1	14
36	Construction of S@TiO ₂ @râ€GO Composites for Highâ€Performance Lithium–Sulfur Batteries. European Journal of Inorganic Chemistry, 2017, 2017, 3248-3252.	2.0	12

#	Article	IF	CITATIONS
37	Molecular engineering lithium sulfur battery cathode based on small organic molecules: An ab-initio investigation. Applied Surface Science, 2019, 484, 1184-1190.	6.1	12
38	Nanoscale interface engineering of inorganic Solid-State electrolytes for High-Performance alkali metal batteries. Journal of Colloid and Interface Science, 2022, 621, 41-66.	9.4	12
39	Microwave electromagnetic and absorption properties of SiO2/C core/shell composites plated with metal cobalt. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	11
40	Hierarchical Porous Carbon Derived from Peanut Hull for Polysulfide Confinement in Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1800898.	3.8	11
41	Understanding Interactions between Lead Iodide Perovskite Surfaces and Lithium Polysulfide toward New-Generation Integrated Solar-Powered Lithium Battery: An ab Initio Investigation. Journal of Physical Chemistry C, 2019, 123, 82-90.	3.1	10
42	Spinel LiMn2O4 Cathode Materials in Wide Voltage Window: Single-Crystalline versus Polycrystalline. Crystals, 2022, 12, 317.	2.2	10
43	Hierarchical Microspheres Constructed by Te@Nâ€Doped Carbon for Efficient Potassium Storage. European Journal of Inorganic Chemistry, 2021, 2021, 2141-2147.	2.0	7
44	Design of micro-nanostructured Mn2O3@CNTs with long cycling for lithium-ion storage. Journal of Materials Science: Materials in Electronics, 2018, 29, 4675-4682.	2.2	6
45	Adsorption and diffusion of lithium ions on <scp>leadâ€free twoâ€dimensional</scp> halide perovskite surface toward energy storage applications. International Journal of Energy Research, 2021, 45, 16524-16537.	4.5	6
46	Construction of hierarchical yolk-shell structured Mn3O4@NC as efficient sulfur hosts for Li–S batteries. Ceramics International, 2021, 48, 6470-6470.	4.8	6
47	Understanding structures and properties of phosphorene/perovskite heterojunction toward perovskite solar cell applications. Journal of Molecular Graphics and Modelling, 2019, 89, 96-101.	2.4	5
48	Photoelectrochemical and first-principles investigation on halide perovskite/TiO2 film improved by dicyano dye. Optical Materials, 2020, 109, 110350.	3.6	5
49	Mn3(PO4)2/rGO as dual-function polysulfide inhibitor through oxygen deficiencies and polar sites for lithium sulfur batteries. Applied Surface Science, 2020, 521, 146425.	6.1	5
50	In situ perfusing Sb particles into porous N-doped carbon microspheres and their electrochemical properties in potassium ion batteries. Journal of Alloys and Compounds, 2022, 906, 164263.	5.5	5
51	Optoelectronic and <scp>photoâ€charging</scp> properties of <scp> CH ₃ NH ₃ Pbl ₃ </scp> / <scp> LiFePO ₄ </scp> system. International Journal of Energy Research, 2021, 45, 6426-6435.	4.5	4
52	Surface engineering Co–B nanoflakes on Mn0.33Co0.67CO3 microspheres as multifunctional bridges towards facilitating Li+ storing performance. Ceramics International, 2020, 46, 19873-19879.	4.8	4
53	Terahertz investigations on photoisomerisable compounds. Molecular Physics, 2017, 115, 2486-2494.	1.7	2
54	Evaluation of Hybrid Anode Usability in Lithium Polysulfide Flow Batteries. Energy Technology, 2017, 5, 2072-2077.	3.8	2

#	Article	IF	CITATIONS
55	General Approach to Prepare 0.33Li ₂ MnO ₃ · 0.67LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Hollow Microspheres for High Performance Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2018, 18, 4127-4134.	0.9	2
56	Engineering Naâ^'Moâ^'O/Graphene Oxide Composites with Enhanced Electrochemical Performance for Lithium Ion Batteries. ChemistryOpen, 2019, 8, 1225-1229.	1.9	2
57	Structures and Properties of Higher-Degree Aggregates of Methylammonium Iodide toward Halide Perovskite Solar Cells. Russian Journal of Physical Chemistry A, 2019, 93, 2250-2255.	0.6	1
58	Structures and Properties of Methylammonium Iodide Precursors of Halide Perovskites and Implications for Solar Cells: an Ab-Initio Investigation. Russian Journal of Physical Chemistry A, 2019, 93, 2694-2698.	0.6	1
59	Understanding photoresponsive catechol-based polyoxotitanate molecules: A combined experimental and first principles investigation. Chemical Physics Letters, 2019, 715, 217-221.	2.6	1
60	Recent Progress and Challenges of Micro-/Nanostructured Transition Metal Carbonate Anodes for Lithium Ion Batteries. European Journal of Inorganic Chemistry, 2018, 2018, 4506-4506.	2.0	0
61	Intermolecular Interactions of Hybrid Organic Dyes Based on Coumarin 343 for Optoelectronic Applications. Russian Journal of Physical Chemistry A, 2019, 93, 2542-2549.	0.6	0
62	Gammaâ€ray radiation on Pâ€doped Si nanoparticles towards the Li + â€storage performances. International Journal of Energy Research, 2020, 44, 7855-7859.	4.5	0