
Gary C Bergstrom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2209362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Fusarium graminearum</i> Species Complex: A Bibliographic Analysis and Web-Accessible Database for Global Mapping of Species and Trichothecene Toxin Chemotypes. Phytopathology, 2022, 112, 741-751.	1.1	18
2	Evaluation of Industrial Hemp Seed Treatments for Management of Damping-Off for Enhanced Stand Establishment. Agriculture (Switzerland), 2022, 12, 591.	1.4	2
3	<i>Phyllachora</i> species infecting maize and other grass species in the Americas represents a complex of closely related species. Ecology and Evolution, 2022, 12, e8832.	0.8	6

Genome-Wide Associations with Resistance to Bipolaris Leaf Spot (Bipolaris oryzae (Breda de Haan)) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

4		P.6	0
5	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	1.1	107
6	Structure and diversity of <i>Fusarium</i> communities inhabiting non-cultivated grass inflorescences in New York State. Canadian Journal of Plant Pathology, 2021, 43, 48-55.	0.8	4
7	Triticum varieties grown as â€~ancient grains' in New York differ in susceptibility to Fusarium head blight and harbor diverse Fusarium flora. European Journal of Plant Pathology, 2021, 159, 693-699.	0.8	1
8	Fusarium graminearum isolates obtained from wheat and wild grasses in northeastern New York display comparable range of phenotypes, including virulence on crop hosts. Journal of Plant Pathology, 2021, 103, 71-77.	0.6	0
9	Genomeâ€wide association mapping of seedling and adult plant response to stem rust in a durum wheat panel. Plant Genome, 2021, 14, e20105.	1.6	5
10	Soybean Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada, from 2015 to 2019. Plant Health Progress, 2021, 22, 483-495.	0.8	80
11	Managing a Destructive, Episodic Crop Disease: A National Survey of Wheat and Barley Growers' Experience With Fusarium Head Blight. Plant Disease, 2020, 104, 634-648.	0.7	13
12	The Incidence of <i>Fusarium graminearum</i> in Wild Grasses is Associated With Rainfall and Cumulative Host Density in New York. Plant Disease, 2020, 104, 2681-2687.	0.7	5
13	Corn Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada, from 2016 to 2019. Plant Health Progress, 2020, 21, 238-247.	0.8	83
14	Preserving Spring Oat Yields in New York Through Varietal Resistance to Crown Rust. Plant Health Progress, 2020, 21, 36-39.	0.8	2
15	A connected halfâ€sib family training population for genomic prediction in barley. Crop Science, 2020, 60, 262-281.	0.8	7
16	Geographic variation in the genetic basis of resistance to leaf rust between locally adapted ecotypes of the biofuel crop switchgrass (<i>Panicum virgatum</i>). New Phytologist, 2020, 227, 1696-1708.	3.5	19
17	First Report of Fusarium armeniacum Causing Fusarium Head Blight of Wheat in New York. Plant Disease, 2020, 104, 3080.	0.7	3
18	Sensitivity of <i>Fusarium graminearum</i> to Metconazole and Tebuconazole Fungicides Before and After Widespread Use in Wheat in the United States. Plant Health Progress, 2020, 21, 85-90.	0.8	14

#	Article	IF	CITATIONS
19	Integrated Effects of Genetic Resistance and Prothioconazole + Tebuconazole Application Timing on Fusarium Head Blight in Wheat. Plant Disease, 2019, 103, 223-237.	0.7	36
20	Population Genetics of <i>Fusarium graminearum</i> at the Interface of Wheat and Wild Grass Communities in New York. Phytopathology, 2019, 109, 2124-2131.	1.1	24
21	Variable interactions between non-cereal grasses and <i>Fusarium graminearum</i> . Canadian Journal of Plant Pathology, 2019, 41, 450-456.	0.8	8
22	Recurrent phenotypic selection for resistance to diseases caused by Bipolaris oryzae in switchgrass (Panicum virgatum L.). Biomass and Bioenergy, 2019, 125, 105-113.	2.9	4
23	Climate change impacts the spread potential of wheat stem rust, a significant crop disease. Environmental Research Letters, 2019, 14, 124053.	2.2	47
24	First Report of the Head Smut Fungus Tilletia maclaganii Affecting Switchgrass in Texas. Plant Disease, 2019, 103, 578.	0.7	5
25	First Report of the Head Smut Fungus <i>Tilletia maclaganii</i> Infecting Switchgrass (<i>Panicum) Tj ETQq1</i>	1 0.784314 0.7	rgBT /Overloc
26	Understanding Yield Loss and Pathogen Biology to Improve Disease Management: Septoria Nodorum Blotch - A Case Study in Wheat. Plant Disease, 2018, 102, 696-707.	0.7	83
27	Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theoretical and Applied Genetics, 2018, 131, 1405-1422.	1.8	101
28	A high proportion of NX-2 genotype strains are found among Fusarium graminearum isolates from northeastern New York State. European Journal of Plant Pathology, 2018, 150, 791-796.	0.8	29
29	<i>Fusarium graminearumâ€</i> induced shoot elongation and root reduction in maize seedlings correlate with later seedling blight severity. Plant Direct, 2018, 2, e00075.	0.8	10
30	New insight into the species diversity and life cycles of rust fungi (Pucciniales) affecting bioenergy switchgrass (Panicum virgatum) in the Eastern and Central United States. Mycological Progress, 2018, 17, 1251-1267.	0.5	6
31	Malting of Fusarium Head Blight-Infected Rye (Secale cereale): Growth of Fusarium graminearum, Trichothecene Production, and the Impact on Malt Quality. Toxins, 2018, 10, 369.	1.5	15
32	Meta-Analysis of the Effects of QoI and DMI Fungicide Combinations on Fusarium Head Blight and Deoxynivalenol in Wheat. Plant Disease, 2018, 102, 2602-2615.	0.7	35
33	First Report of Sudden Death Syndrome of Soybean Caused by <i>Fusarium virguliforme</i> in New York. Plant Disease, 2018, 102, 2036-2036.	0.7	4
34	Effects of Pre- and Postanthesis Applications of Demethylation Inhibitor Fungicides on Fusarium Head Blight and Deoxynivalenol in Spring and Winter Wheat. Plant Disease, 2018, 102, 2500-2510.	0.7	32
35	First Report of Tawny Blotch Caused by Parastagonospora caricis on Phalaris arundinacea in New York. Plant Disease, 2018, 102, 1659-1659.	0.7	0
36	Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat. Theoretical and Applied Genetics, 2017, 130, 1415-1430.	1.8	99

#	Article	IF	CITATIONS
37	A special issue on Fusarium head blight and wheat blast. Tropical Plant Pathology, 2017, 42, 143-145.	0.8	11
38	First Report of <i>Puccinia coronata</i> var. <i>coronata</i> sensu stricto Infecting Alder Buckthorn in the United States. Plant Health Progress, 2017, 18, 84-86.	0.8	3
39	Corn Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada from 2012 to 2015. Plant Health Progress, 2016, 17, 211-222.	0.8	135
40	Detection and phylogenetic relationships of Puccinia emaculata and Uromyces graminicola (Pucciniales) on switchgrass in New York State using rDNA sequence information. Fungal Biology, 2016, 120, 791-806.	1.1	9
41	Disease Risk, Spatial Patterns, and Incidence-Severity Relationships of Fusarium Head Blight in No-till Spring Wheat Following Maize or Soybean. Plant Disease, 2015, 99, 1360-1366.	0.7	21
42	Trichothecene Genotype Composition of <i>Fusarium graminearum</i> Not Differentiated Among Isolates from Maize Stubble, Maize Ears, Wheat Spikes, and the Atmosphere in New York. Phytopathology, 2015, 105, 695-699.	1.1	20
43	<i>Fusarium graminearum</i> Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests. Phytopathology, 2015, 105, 441-448.	1.1	26
44	The aerobiology of Fusarium graminearum. Aerobiologia, 2014, 30, 123-136.	0.7	67
45	Nutrient-induced spore germination of a <i>Bacillus amyloliquefaciens</i> biocontrol agent on wheat spikes. Journal of Applied Microbiology, 2014, 116, 1572-1583.	1.4	22
46	Spatial distribution and antifungal interactions of a Bacillus biological control agent on wheat surfaces. Biological Control, 2014, 78, 23-32.	1.4	20
47	Triazole Sensitivity in a Contemporary Population of <i>Fusarium graminearum</i> from New York Wheat and Competitiveness of a Tebuconazole-Resistant Isolate. Plant Disease, 2014, 98, 607-613.	0.7	107
48	Fitness Attributes of <i>Fusarium graminearum</i> Isolates from Wheat in New York Possessing a 3-ADON or 15-ADON Trichothecene Genotype. Phytopathology, 2014, 104, 513-519.	1.1	46
49	A Unified Effort to Fight an Enemy of Wheat and Barley: Fusarium Head Blight. Plant Disease, 2012, 96, 1712-1728.	0.7	628
50	Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Current Opinion in Microbiology, 2011, 14, 264-270.	2.3	101
51	Genetic and Morphological Evidence that <i>Phoma sclerotioides</i> , Causal Agent of Brown Root Rot of Alfalfa, Is Composed of a Species Complex. Phytopathology, 2011, 101, 594-610.	1.1	20
52	Reduced Anthracnose Stalk Rot in Resistant Maize is Associated with Restricted Development of Colletotrichum graminicola in Pith Tissues. Journal of Phytopathology, 2011, 159, 329-341.	0.5	13
53	Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnology for Biofuels, 2011, 4, 4.	6.2	229
54	Local Distance of Wheat Spike Infection by Released Clones of <i>Gibberella zeae</i> Disseminated from Infested Corn Residue. Plant Disease, 2010, 94, 1151-1155.	0.7	25

#	Article	IF	CITATIONS
55	An optimized microplate assay system for quantitative evaluation of plant cell wall–degrading enzyme activity of fungal culture extracts. Biotechnology and Bioengineering, 2009, 102, 1033-1044.	1.7	129
56	Characterization of <i>Fusarium oxysporum</i> f. sp. <i>loti</i> Forma Specialis nov., a Monophyletic Pathogen Causing Vascular Wilt of Birdsfoot Trefoil. Plant Disease, 2009, 93, 58-66.	0.7	21
57	Relative Contribution of Seed-Transmitted Inoculum to Foliar Populations of Phaeosphaeria nodorum. Phytopathology, 2007, 97, 584-591.	1.1	29
58	Minimization of between-well sample variance of antifungal activity using a high-throughput screening microplate bioassay. BioTechniques, 2007, 42, 168-172.	0.8	8
59	The Aerobiology and Population Genetic Structure of Cibberella zeae. Plant Health Progress, 2007, 8, 67.	0.8	3
60	Genetic Structure of Atmospheric Populations of Gibberella zeae. Phytopathology, 2006, 96, 1021-1026.	1.1	101
61	Night-time spore deposition of the fusarium head blight pathogen, <i>Gibberella zeae</i> , in rotational wheat fields. Canadian Journal of Plant Pathology, 2006, 28, 100-108.	0.8	31
62	Population Structure of Seedborne Phaeosphaeria nodorum on New York Wheat. Phytopathology, 2005, 95, 300-305.	1.1	35
63	Spatial Patterns of Viable Spore Deposition of Gibberella zeae in Wheat Fields. Phytopathology, 2005, 95, 472-479.	1.1	52
64	The forcible discharge distance of ascospores of <i>Gibberella</i> zeae. Canadian Journal of Plant Pathology, 2005, 27, 376-382.	0.8	31
65	Spatial patterns of viable spore deposition of the corn ear rot pathogen, <i>Gibberella zeae</i> , in first-year corn fields. Canadian Journal of Plant Pathology, 2005, 27, 225-233.	0.8	17
66	The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agricultural and Forest Meteorology, 2005, 132, 20-27.	1.9	129
67	Giberela do trigo: aspectos epidemiológicos e modelos de previsão. Tropical Plant Pathology, 2004, 29, 587-605.	0.3	20
68	Spore deposition of the ear rot pathogen, <i>Gibberella zeae</i> , inside corn canopies. Canadian Journal of Plant Pathology, 2004, 26, 591-595.	0.8	27
69	Sequence diversity of mating-type genes in Phaeosphaeria avenaria. Current Genetics, 2003, 43, 121-130.	0.8	18
70	Healthy crops, plants and forests. Outlooks on Pest Management, 2003, 14, 201.	0.2	0
71	Spatial Patterns of Fusarium Head Blight in New York Wheat Fields Suggest Role of Airborne Inoculum. Plant Health Progress, 2003, 4, .	0.8	31
72	A Rainfall-Based Model for Predicting the Regional Incidence of Wheat Seed Infection by Stagonospora nodorum in New York. Phytopathology, 2002, 92, 511-518.	1.1	17

#	Article	IF	CITATIONS
73	Foci of Stagonospora Nodorum Blotch in Winter Wheat Before Canopy Development. Phytopathology, 2001, 91, 642-647.	1.1	27
74	Differential Seed Infection of Wheat Cultivars by Stagonospora nodorum. Plant Disease, 2000, 84, 749-752.	0.7	16
75	Temperature Dependent Seed Transmission of Stagonospora nodorum in Wheat. European Journal of Plant Pathology, 2000, 106, 837-842.	0.8	17
76	Agronomics and Economics of Different Weed Management Systems in Corn and Soybean. Agronomy Journal, 1999, 91, 585-591.	0.9	19
77	The Biology of Corn Anthracnose: Knowledge to Exploit for Improved Management. Plant Disease, 1999, 83, 596-608.	0.7	130
78	Selection for decreased sensitivity to propiconazole in experimental field populations ofStagonospora nodorum(syn.Septoria nodorum). Canadian Journal of Plant Pathology, 1994, 16, 109-117.	0.8	7
79	Mitotic stability of transforming DNA is determined by its chromosomal configuration in the fungus Cochliobolus heterostrophus. Current Genetics, 1991, 19, 227-233.	0.8	24
80	Association of epidermal lignification with nonhost resistance of cucurbits to fungi. Canadian Journal of Botany, 1985, 63, 2393-2398.	1.2	52
81	Fungal plant pathogens observed on perennial cereal crops in New York during 2017–2018. Renewable Agriculture and Food Systems, 0, , 1-13.	0.8	0