Shudong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2209279/publications.pdf

Version: 2024-02-01

623734 580821 39 626 14 25 h-index citations g-index papers 41 41 41 498 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanoporous Polymer Reflectors for Organic Solar Cells. Energy Technology, 2022, 10, 2100676.	3.8	5
2	Biomimetic Porous Fluoropolymer Films with Brilliant Whiteness by Using Polymerizationâ€Induced Phase Separation. Advanced Materials Interfaces, 2022, 9, .	3.7	15
3	The kapok petal: superhydrophobic surface induced by microscale trichomes. Bioinspiration and Biomimetics, 2022, 17, 026007.	2.9	4
4	Polystyrene-Fiber-Rod Hybrid Composite Structure for Optical Enhancement in Quantum-Dot-Converted Light-Emitting Diodes. ACS Applied Polymer Materials, 2022, 4, 91-99.	4.4	8
5	An Allâ€Fabric Dropletâ€Based Energy Harvester with Topology Optimization. Advanced Energy Materials, 2022, 12, .	19.5	19
6	Micro-Prism Patterned Remote Phosphor Film for Enhanced Luminous Efficiency and Color Uniformity of Phosphor-Converted Light-Emitting Diodes. Micromachines, 2021, 12, 1117.	2.9	2
7	Highâ€Transmittance and Highâ€Haze Composite Particleâ€Free Optical Diffusers Enabled by Polymerizationâ€Induced Phase Separation. Advanced Photonics Research, 2021, 2, .	3.6	13
8	White hairy layer on the <i>Boehmeria nivea</i> leafâ€"inspiration for reflective coatings. Bioinspiration and Biomimetics, 2020, 15, 016003.	2.9	12
9	Enhancing Luminous Efficiency of Quantum Dot-Based Chip-on-Board Light-Emitting Diodes Using Polystyrene Fiber Mats. IEEE Transactions on Electron Devices, 2020, 67, 4530-4533.	3.0	9
10	Study of the Optical Properties of Multi-Particle Phosphors by the FDTD and Ray Tracing Combined Method. Photonics, 2020, 7, 126.	2.0	6
11	Encapsulation of Perovskite Quantum Dots into Paraffin Microcapsules and application on light-emitting diodes., 2020,,.		0
12	Highly reflective porous films via polymerization-induced phase separation and application on phosphor-converted light-emitting diodes., 2020,,.		0
13	Design of Selective Reflectors Utilizing Multiple Scattering by Core–Shell Nanoparticles for Color Conversion Films. ACS Photonics, 2020, 7, 1452-1460.	6.6	7
14	Highly Efficient and Waterâ€Stable Lead Halide Perovskite Quantum Dots Using Superhydrophobic Aerogel Inorganic Matrix for White Lightâ€Emitting Diodes. Advanced Materials Technologies, 2020, 5, 1900941.	5.8	42
15	Numerical study on the scattering property of porous polymer structures via supercritical CO ₂ microcellular foaming. Applied Optics, 2020, 59, 4533.	1.8	4
16	Bioinspired high-scattering polymer films fabricated by polymerization-induced phase separation. Optics Letters, 2020, 45, 2918.	3.3	13
17	Highly scattering porous films by polymerization-induced phase separation and application on light-emitting diodes. , 2020, , .		O
18	Enhanced Photoluminescence in Quantum Dots–Porous Polymer Hybrid Films Fabricated by Microcellular Foaming. Advanced Optical Materials, 2019, 7, 1900223.	7.3	39

#	Article	IF	Citations
19	Enhanced color conversion of quantum dots - polymer hybrid films in light emitting diodes. , 2019, , .		O
20	Foamed polymer/quantum dots composite films with enhanced photoluminescence efficiency. , 2019, , .		0
21	Enhancement of Luminous Efficiency and Uniformity of CCT for Quantum Dot-Converted LEDs by Incorporating With ZnO Nanoparticles. IEEE Transactions on Electron Devices, 2018, 65, 158-164.	3.0	62
22	Rapid synthesis of highly photoluminescent nitrogen-doped carbon quantum dots via a microreactor with foamy copper for the detection of Hg2+ ions. Sensors and Actuators B: Chemical, 2018, 258, 637-647.	7.8	53
23	Enhancing optical performance of quantum dot-converted LEDs via electrospun fiber rods. , 2018, , .		O
24	Highly Photoluminescent and Stable N-Doped Carbon Dots as Nanoprobes for Hg2+ Detection. Nanomaterials, 2018, 8, 900.	4.1	50
25	Diffusion films fabricated by phase separation of polymer blend and their application on color uniformity enhancement of LEDs. , 2018, , .		0
26	Enhancing Color Conversion Efficiency of Quantum Dot LED by Electric Field Assistance. , 2018, , .		0
27	Enhancement of angular color uniformity of remote-phosphor-converted light-emitting diodes by electrospun-nanofiber diffusing films. Materials Letters, 2018, 227, 104-107.	2.6	13
28	Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites. Photonics Research, 2018, 6, 90.	7.0	56
29	Improvement in Color-Conversion Efficiency and Stability for Quantum-Dot-Based Light-Emitting Diodes Using a Blue Anti-Transmission Film. Nanomaterials, 2018, 8, 508.	4.1	17
30	Enhanced color conversion efficiency of remote phosphor-converted light-emitting diodes using micro-concavity arrays. , 2018, , .		0
31	Freeform illumination lens design combining energy and intensity mapping. Optical Engineering, 2017, 56, 045101.	1.0	6
32	Influence of lens structure on the mechanical strength of high-power light emitting diodes. , 2017, , .		0
33	Butterfly-inspired micro-concavity array film for color conversion efficiency improvement of quantum-dot-based light-emitting diodes. Optics Letters, 2017, 42, 4962.	3.3	23
34	Effect of ZnO nanostructures on the optical properties of white light-emitting diodes. Optics Express, 2017, 25, A432.	3.4	22
35	Highly reflective nanofiber films based on electrospinning and their application on color uniformity and luminous efficacy improvement of white light-emitting diodes. Optics Express, 2017, 25, 20598.	3.4	33
36	Energy feedback freeform lenses for uniform illumination of extended light source LEDs. Applied Optics, 2016, 55, 10375.	2.1	17

Shudong Yu

#	Article	IF	CITATION
37	Color uniformity enhancement for COB WLEDs using a remote phosphor film with two freeform surfaces. Optics Express, 2016, 24, 23685.	3.4	21
38	ACU Optimization of pcLEDs by Combining the Pulsed Spray and Feedback Method. Journal of Display Technology, 2016, 12, 1229-1234.	1.2	14
39	Angular color uniformity enhancement of white light-emitting diodes by remote micro-patterned phosphor film. Photonics Research, 2016, 4, 140.	7.0	38