Jianying Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2209102/publications.pdf

Version: 2024-02-01

126907 155660 3,340 85 33 55 citations g-index h-index papers 86 86 86 4611 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Achieving steam and electrical power from solar energy by MoS2-based composites. Chemical Engineering Journal, 2022, 427, 131008.	12.7	55
2	Highly Emissive Carbon Dots/Organosilicon Composites for Efficient and Stable Luminescent Solar Concentrators. ACS Applied Energy Materials, 2022, 5, 1781-1792.	5.1	18
3	Ultrasensitive Label-Free DNA Detection Based on Solution-Gated Graphene Transistors Functionalized with Carbon Quantum Dots. Analytical Chemistry, 2022, 94, 3320-3327.	6.5	23
4	Bifunctional <i>in situ</i> polymerized nanocomposites for convective solar desalination and enhanced photo-thermoelectric power generation. Environmental Science: Nano, 2022, 9, 1685-1698.	4.3	22
5	Construction of highly efficient carbon dots-based polymer photonic luminescent solar concentrators with sandwich structure. Nanotechnology, 2022, 33, 305601.	2.6	4
6	The Gate-Modified Solution-Gated Graphene Transistors for the Highly Sensitive Detection of Lead lons. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1626-1633.	8.0	9
7	Cellulosic CuI Nanoparticles as a Heterogeneous, Recyclable Catalyst for the Borylation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Acceptors in Aqueous Media. Catalysis Letters, 2021, 151, 3220-3229.	2.6	7
8	Salt-resistant carbon dots modified solar steam system enhanced by chemical advection. Carbon, 2021, 176, 313-326.	10.3	68
9	Highly efficient and stable carbon-based perovskite solar cells with the polymer hole transport layer. Solar Energy, 2021, 220, 491-497.	6.1	15
10	Photoresponsive Biomimetic Soft Robots Enabled by Nearâ€Infraredâ€Driven and Ultrarobust Sandwichâ€Structured Nanocomposite Films. Advanced Intelligent Systems, 2021, 3, 2100012.	6.1	5
11	Photoresponsive Biomimetic Soft Robots Enabled by Nearâ€Infraredâ€Driven and Ultrarobust Sandwichâ€Structured Nanocomposite Films. Advanced Intelligent Systems, 2021, 3, 2170067.	6.1	1
12	Solid-state photoluminescent silicone-carbon dots/dendrimer composites for highly efficient luminescent solar concentrators. Chemical Engineering Journal, 2021, 422, 130158.	12.7	39
13	Stable metallic 1T phase engineering of molybdenum disulfide for enhanced solar vapor generation. Solar Energy Materials and Solar Cells, 2020, 204, 110227.	6.2	37
14	Chinese hydrangea lantern-like Co ₉ S ₈ @MoS ₂ composites with enhanced lithium-ion battery properties. Nanoscale, 2020, 12, 3435-3442.	5 . 6	20
15	Yolk-double shell Fe3O4@C@C composite as high-performance anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 822, 153656.	5 . 5	26
16	Functional Carbon Quantum Dots for Highly Sensitive Graphene Transistors for Cu ²⁺ Ion Detection. ACS Applied Materials & Interfaces, 2020, 12, 4797-4803.	8.0	64
17	Controlled Synthesis of Long-Wavelength Multicolor-Emitting Carbon Dots for Highly Efficient Tandem Luminescent Solar Concentrators. ACS Applied Energy Materials, 2020, 3, 12230-12237.	5.1	34
18	Efficient polysulfide anchor: brain coral-like WS2 nanosheets. Journal of Materials Science, 2020, 55, 12031-12040.	3.7	14

#	Article	IF	CITATIONS
19	Lignin-derived red-emitting carbon dots for colorimetric and sensitive fluorometric detection of water in organic solvents. Analytical Methods, 2020, 12, 3218-3224.	2.7	41
20	Ultrasensitive Fe ³⁺ ion detection based on carbon quantum dot-functionalized solution-gated graphene transistors. Journal of Materials Chemistry C, 2020, 8, 4685-4689.	5.5	20
21	Osmosis manipulable morphology and photonic property of microcapsules with colloidal nano-in-micro structure. Journal of Colloid and Interface Science, 2020, 574, 337-346.	9.4	9
22	Carbon dot-based inverse opal hydrogels with photoluminescence: dual-mode sensing of solvents and metal ions. Analyst, The, 2019, 144, 5802-5809.	3. 5	14
23	Self-assembly of colloids based on microfluidics. Nanoscale, 2019, 11, 16708-16722.	5.6	30
24	Controllable microstructure of polymer-small molecule blend thin films for high-performance organic field-effect transistors. Applied Surface Science, 2019, 498, 143822.	6.1	28
25	Highly sensitive solution-gated graphene transistors for label-free DNA detection. Biosensors and Bioelectronics, 2019, 136, 91-96.	10.1	45
26	Synthesis and Applications of Redâ€Emissive Carbon Dots. Chemical Record, 2019, 19, 2083-2094.	5.8	56
27	Strong lithium polysulfides chemical trapping of TiC-TiO2/S composite for long-cycle lithium-sulfur batteries. Electrochimica Acta, 2019, 298, 43-51.	5.2	46
28	Hierarchical LiNi0.5Mn1.5O4 microspheres assembled with nanorice and their enhanced rates performance. Materials Letters, 2019, 236, 653-656.	2.6	3
29	Functionalized carbon materials for efficient solar steam and electricity generation. Materials Chemistry and Physics, 2019, 222, 159-164.	4.0	40
30	Construction of high-strength p(HEMA-co-AA) fluorescent hydrogels based on modified carbon dots as chemically crosslinkers. Colloid and Polymer Science, 2018, 296, 745-752.	2.1	15
31	Controlled Shape Transformation and Loading Release of Smart Hemispherical Hybrid Microgels Triggered by †Inner Engines'. ChemistrySelect, 2018, 3, 4067-4074.	1.5	1
32	Singleâ€Step Hydrothermal Synthesis of N, Sâ€Dualâ€Doped Graphene Networks as Metalâ€Free Efficient Electrocatalysts for Oxygen Reduction Reaction. ChemistrySelect, 2018, 3, 3241-3250.	1.5	16
33	Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination. Semiconductor Science and Technology, 2018, 33, 025008.	2.0	53
34	Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation. Carbon, 2018, 130, 250-256.	10.3	155
35	Hierarchical LiNi0.5Mn1.5O4 micro-rods with enhanced rate performance for lithium-ion batteries. Journal of Materials Science, 2018, 53, 9710-9720.	3.7	10
36	Responsive Photonic Hydrogel-Based Colorimetric Sensors for Detection of Aldehydes in Aqueous Solution. Langmuir, 2018, 34, 3987-3992.	3.5	55

#	Article	IF	Citations
37	Durian-like NiS2@rGO nanocomposites and their enhanced rate performance. Chemical Engineering Journal, 2018, 335, 275-281.	12.7	43
38	Green emitting N,S-co-doped carbon dots for sensitive fluorometric determination of Fe(III) and Ag(I) ions, and as a solvatochromic probe. Mikrochimica Acta, 2018, 185, 510.	5.0	49
39	PEGylated Self-Growth MoS ₂ on a Cotton Cloth Substrate for High-Efficiency Solar Energy Utilization. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24583-24589.	8.0	133
40	Reduced Graphene Oxide-Supported Cobalt Phosphide Nanoflowers via <i>in situ</i> Hydrothermal Synthesis as Pt-Free Effective Electrocatalysts for Oxygen Reduction Reaction. Nano, 2018, 13, 1850047.	1.0	6
41	Polyethylene Glycol Based Graphene Aerogel Confined Phase Change Materials with High Thermal Stability. Journal of Nanoscience and Nanotechnology, 2018, 18, 3341-3347.	0.9	22
42	8-aminoquinoline functionalized graphene oxide for simultaneous determination of guanine and adenine. Journal of Solid State Electrochemistry, 2017, 21, 1357-1364.	2.5	9
43	Accessible Graphene Aerogel for Efficiently Harvesting Solar Energy. ACS Sustainable Chemistry and Engineering, 2017, 5, 4665-4671.	6.7	208
44	Reduced Graphene Oxide–Polyurethane Nanocomposite Foam as a Reusable Photoreceiver for Efficient Solar Steam Generation. Chemistry of Materials, 2017, 29, 5629-5635.	6.7	257
45	Porous SnO2 hexagonal prism-attached Pd/rGO with enhanced electrocatalytic activity for methanol oxidation. RSC Advances, 2017, 7, 29909-29915.	3.6	12
46	Reprogrammable ultra-fast shape-transformation of macroporous composite hydrogel sheets. Journal of Materials Chemistry B, 2017, 5, 2883-2887.	5.8	23
47	Synthesis of disk-like LiNi1/3Co1/3Mn1/3O2nanoplates with exposed (001) planes and their enhanced rate performance in a lithium ion battery. CrystEngComm, 2017, 19, 442-446.	2.6	19
48	Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids. Applied Thermal Engineering, 2017, 114, 961-968.	6.0	140
49	Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38467-38476.	8.0	76
50	Low-Temperature and Solution-Processable Zinc Oxide Transistors for Transparent Electronics. ACS Omega, 2017, 2, 8990-8996.	3.5	50
51	Construction of upconversion photonic films with enhanced luminescence via self-assembly of monodispersed hexagonal-phase NaYF ₄ :Yb, Er nanoplates. Materials Express, 2017, 7, 324-328.	0.5	0
52	Synthesis of a novel kind of uniform fluorescent silica colloids and their assembled photonic film for sensitive detection of Cu ²⁺ ions. Materials Express, 2017, 7, 351-360.	0.5	8
53	Dual-Mode High-Sensitive Detection of Fe(III) Ions via Fluorescent Photonic Crystal Films Based on Co-Assembly of Silica Colloids and Carbon Dots. Science of Advanced Materials, 2017, 9, 873-880.	0.7	7
54	Full-color photonic hydrogels for pH and ionic strength sensing. European Polymer Journal, 2016, 83, 60-66.	5.4	42

#	Article	IF	Citations
55	A sensitive porphyrin/reduced graphene oxide electrode for simultaneous detection of guanine and adenine. Journal of Solid State Electrochemistry, 2016, 20, 2055-2062.	2.5	15
56	Coherent polyaniline/graphene oxides/multi-walled carbon nanotubes ternary composites for asymmetric supercapacitors. Electrochimica Acta, 2016, 191, 165-172.	5.2	31
57	Light-triggered generation of multifunctional gas-filled capsules on-demand. Journal of Materials Chemistry C, 2016, 4, 652-658.	5.5	5
58	Synthesis of shell-in-shell LiNi0.5Mn1.5O4 hollow microspheres and their enhanced performance for lithium ion batteries. Materials Letters, 2016, 173, 141-144.	2.6	4
59	Formation of hybrid core–shell microgels induced by autonomous unidirectional migration of nanoparticles. Materials Horizons, 2016, 3, 78-82.	12.2	14
60	In situ synthesis of crosslinked-polyaniline nano-pillar arrays/reduced graphene oxide nanocomposites for supercapacitors. Journal of Solid State Electrochemistry, 2016, 20, 665-671.	2.5	5
61	Er:YAG fractional laser as a percutaneous absorption promoter for controlled delivery of antibody in vitro. Journal of Controlled Release, 2015, 213, e56.	9.9	1
62	Hierarchical architectured MnCO3 microdumbbells: facile synthesis and enhanced performance for lithium ion batteries. CrystEngComm, 2015, 17, 6450-6455.	2.6	45
63	A facile strategy to synthesize three-dimensional Pd@Pt core–shell nanoflowers supported on graphene nanosheets as enhanced nanoelectrocatalysts for methanol oxidation. Chemical Communications, 2015, 51, 10490-10493.	4.1	55
64	One-pot synthesis of lightweight nitrogen-doped graphene hydrogels with supercapacitive properties. Materials Research Bulletin, 2015, 68, 245-253.	5.2	12
65	Facile synthesis of PEG based shape-stabilized phase change materials and their photo-thermal energy conversion. Applied Thermal Engineering, 2015, 91, 630-637.	6.0	103
66	Highly Sensitive Mechanochromic Photonic Hydrogels with Fast Reversibility and Mechanical Stability. Langmuir, 2015, 31, 8732-8737.	3.5	77
67	Non-Spherical Hollow Microgels with Uniform Sizes and Tunable Shapes from Microfluidic-Assisted Approach. Science of Advanced Materials, 2015, 7, 902-909.	0.7	4
68	Selfâ€assembly of poly(3â€hexyl thiophene)â€ <i>b</i> à€poly(ethylene oxide) into cylindrical micelles in binary solvent mixtures. Journal of Applied Polymer Science, 2014, 131, .	2.6	4
69	Encapsulation of inorganic nanoparticles into block copolymer micellar aggregates: Strategies and precise localization of nanoparticles. Polymer, 2014, 55, 1079-1096.	3.8	106
70	Encapsulation of pristine fullerene C60 within block copolymer micelles through interfacial instabilities of emulsion droplets. Journal of Colloid and Interface Science, 2014, 418, 81-86.	9.4	15
71	Low-temperature and one-pot synthesis of sulfurized graphene nanosheets via in situ doping and their superior electrocatalytic activity for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 20714-20722.	10.3	54
72	Uniform Core–Shell Photonic Crystal Microbeads as Microcarriers for Optical Encoding. Langmuir, 2014, 30, 11883-11889.	3.5	14

#	Article	IF	CITATIONS
73	Fabrication of porous polymer microparticles with tunable pore size and density through the combination of phase separation and emulsion-solvent evaporation approach. Korea Australia Rheology Journal, 2014, 26, 63-71.	1.7	23
74	Recent advances in spherical photonic crystals: Generation and applications in optics. European Polymer Journal, 2013, 49, 3420-3433.	5.4	24
75	Synthesis of polymer–inorganic patchy microcapsules with tunable patches. European Polymer Journal, 2013, 49, 3691-3701.	5.4	6
76	Multiresponsive Hydrogel Photonic Crystal Microparticles with Inverse-Opal Structure. Langmuir, 2013, 29, 8825-8834.	3. 5	61
77	A Simple Route To Improve Inorganic Nanoparticles Loading Efficiency in Block Copolymer Micelles. Macromolecules, 2013, 46, 2282-2291.	4.8	61
78	Janus Photonic Crystal Microspheres: Centrifugation-Assisted Generation and Reversible Optical Property. Langmuir, 2013, 29, 15529-15534.	3.5	32
79	Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking. Biomicrofluidics, 2012, 6, 26502-265029.	2.4	102
80	Microfluidic Fabrication and Thermoreversible Response of Core/Shell Photonic Crystalline Microspheres Based on Deformable Nanogels. Langmuir, 2012, 28, 17186-17192.	3 . 5	61
81	Construction of multifunctional photonic crystal microcapsules with tunable shell structures by combining microfluidic and controlled photopolymerization. Lab on A Chip, 2012, 12, 2795.	6.0	40
82	Tuning the stop bands of inverse opal hydrogels with double network structure by controlling the solvent and pH. Journal of Colloid and Interface Science, 2011, 353, 498-505.	9.4	21
83	Tunable multicolor pattern and stop-band shift based on inverse opal hydrogel heterostructure. Journal of Colloid and Interface Science, 2011, 357, 139-146.	9.4	10
84	Tunable Multiresponsive Methacrylic Acid Based Inverse Opal Hydrogels Prepared by Controlling the Synthesis Conditions. Langmuir, 2009, 25, 1855-1864.	3.5	13
85	Multiresponsive Inverseâ€Opal Hydrogels. Advanced Materials, 2007, 19, 3865-3871.	21.0	120