Reuben Hudson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2209082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations. Green Chemistry, 2014, 16, 4493-4505.	9.0	229
2	Magnetic copper–iron nanoparticles as simple heterogeneous catalysts for the azide–alkyne click reaction in water. Green Chemistry, 2012, 14, 622.	9.0	186
3	Fe ₃ O ₄ Nanoparticle-Supported Copper(I) Pybox Catalyst: Magnetically Recoverable Catalyst for Enantioselective Direct-Addition of Terminal Alkynes to Imines. Organic Letters, 2011, 13, 442-445.	4.6	171
4	Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow. Green Chemistry, 2013, 15, 2141.	9.0	96
5	Iron-iron oxide core–shell nanoparticles are active and magnetically recyclable olefin and alkyne hydrogenation catalysts in protic and aqueous media. Chemical Communications, 2012, 48, 3360.	4.1	91
6	CO ₂ reduction driven by a pH gradient. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22873-22879.	7.1	84
7	Sustainable Synthesis of Magnetic Ruthenium-Coated Iron Nanoparticles and Application in the Catalytic Transfer Hydrogenation of Ketones. ACS Sustainable Chemistry and Engineering, 2015, 3, 814-820.	6.7	46
8	Reversing aggregation: direct synthesis of nanocatalysts from bulk metal. Cellulose nanocrystals as active support to access efficient hydrogenation silver nanocatalysts. Green Chemistry, 2016, 18, 129-133.	9.0	46
9	Magnetically Recoverable CuFe2O4 Nanoparticles as Highly Active Catalysts for Csp3-Csp and Csp3-Csp3 Oxidative Cross-Dehydrogenative Coupling. Synlett, 2013, 24, 1637-1642.	1.8	36
10	Synthesis of indoles, benzofurans, and related heterocycles via an acetylene-activated S _N Ar/intramolecular cyclization cascade sequence in water or DMSO. Organic and Biomolecular Chemistry, 2015, 13, 2273-2284.	2.8	36
11	From Lobster Shells to Plastic Objects: A Bioplastics Activity. Journal of Chemical Education, 2015, 92, 1882-1885.	2.3	33
12	Exploring Green Chemistry Metrics with Interlocking Building Block Molecular Models. Journal of Chemical Education, 2016, 93, 691-694.	2.3	30
13	Coupling the magnetic and heat dissipative properties of Fe ₃ O ₄ particles to enable applications in catalysis, drug delivery, tissue destruction and remote biological interfacing. RSC Advances, 2016, 6, 4262-4270.	3.6	22
14	Ligand Modified CuFe2O4 Nanoparticles as Magnetically Recoverable and Reusable Catalyst for Azide-Alkyne Click Condensation. Heterocycles, 2012, 86, 1023.	0.7	16
15	Evaluating Feedstocks, Processes, and Products in the Teaching Laboratory: A Framework for Students To Use Metrics to Design Greener Chemistry Experiments. Journal of Chemical Education, 2020, 97, 390-401.	2.3	15
16	Convergent Strategy for the Synthesis of Oxa-, Thia-, and Selena[5]helicenes by Acetylene-Activated S _N Ar Reactions. Journal of Organic Chemistry, 2020, 85, 4553-4559.	3.2	15
17	Copper Ferrite (CuFe2O4) Nanoparticles. Synlett, 2013, 24, 1309-1310.	1.8	14
18	Cyclopropanation of diazoesters with styrene derivatives catalyzed by magnetically recoverable copper-plated iron nanoparticles. Tetrahedron, 2014, 70, 6162-6168.	1.9	13

REUBEN HUDSON

#	Article	IF	CITATIONS
19	Recording Tutorials To Increase Student Use and Incorporating Demonstrations To Engage Live Participants. Journal of Chemical Education, 2013, 90, 527-530.	2.3	9
20	Visualizing Nanocatalysts in Action from Color Change Reaction to Magnetic Recycling and Reuse. Journal of Chemical Education, 2015, 92, 1892-1895.	2.3	9
21	Oxacalixarenes. , 2016, , 399-420.		9
22	Poly(<i>meta</i> -phenylene oxides) for the design of a tunable, efficient, and reusable catalytic platform. Chemical Communications, 2018, 54, 2878-2881.	4.1	9
23	Safe and Sustainable Chemistry Activities: Fostering a Culture of Safety in K–12 and Community Outreach Programs. Journal of Chemical Education, 2021, 98, 71-77.	2.3	9
24	Toward the Selection of Sustainable Catalysts for Suzuki–Miyaura Coupling: A Gate-to-Gate Analysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 14880-14887.	6.7	8
25	The Struggle with Voice in Scientific Writing. Journal of Chemical Education, 2013, 90, 1580-1580.	2.3	7
26	Cyclopropanation of diazoesters with styrene derivatives catalyzed by magnetically recoverable copper-plated iron nanoparticles. Tetrahedron, 2014, 70, 8952-8958.	1.9	7
27	CO ₂ Dry Cleaning: A Benign Solvent Demonstration Accessible to K–8 Audiences. Journal of Chemical Education, 2017, 94, 480-482.	2.3	7
28	Evaluation of carboxylic, phosphonic, and sulfonic acid protogenic moieties on tunable poly(<i>meta</i> â€phenylene oxide) ionomer scaffolds. Journal of Polymer Science Part A, 2019, 57, 2209-2213.	2.3	5
29	Dry Ice as an Alternative Leavening Agent for Pancakes to Demonstrate Phase Transitions or Chemical Transformations. Journal of Chemical Education, 2022, 99, 1523-1526.	2.3	2
30	Incorporating Microbes into Laboratory-Grown Chimneys for Hydrothermal Microbiology Experiments. ACS Earth and Space Chemistry, 2022, 6, 953-961.	2.7	2
31	Similarities between Scientific and Dramatic Prose. Journal of Chemical Education, 2015, 92, 781-783.	2.3	0
32	Jacinto Sa and Anna Srebowata (eds): Hydrogenation with low-cost transition metals. Transition Metal Chemistry, 2016, 41, 951-952.	1.4	0
33	Cross-cultural chemistry. Nature Chemistry, 2019, 11, 196-198.	13.6	0