James Michael Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2209012/publications.pdf

Version: 2024-02-01

72 papers

2,679 citations

279487 23 h-index 197535 49 g-index

72 all docs 72 docs citations

72 times ranked 3895 citing authors

#	Article	IF	Citations
1	Pulmonary Arterial Enlargement and Acute Exacerbations of COPD. New England Journal of Medicine, 2012, 367, 913-921.	13.9	397
2	Frequency of exacerbations in patients with chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respiratory Medicine, the, 2017, 5, 619-626.	5.2	219
3	Computed Tomographic Measures of Pulmonary Vascular Morphology in Smokers and Their Clinical Implications. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 231-239.	2.5	188
4	MMP generated matrikines. Matrix Biology, 2015, 44-46, 122-129.	1.5	181
5	CT Scan-Measured Pulmonary Artery to Aorta Ratio and Echocardiography for Detecting Pulmonary Hypertension in Severe COPD. Chest, 2014, 145, 824-832.	0.4	147
6	Longitudinal Phenotypes and Mortality in Preserved Ratio Impaired Spirometry in the COPDGene Study. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1397-1405.	2.5	132
7	COPDGene® 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2019, 6, 384-399.	0.5	112
8	Metoprolol for the Prevention of Acute Exacerbations of COPD. New England Journal of Medicine, 2019, 381, 2304-2314.	13.9	111
9	An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup. Journal of Clinical Investigation, 2018, 129, 169-181.	3.9	77
10	Arterial Vascular Pruning, Right Ventricular Size, and Clinical Outcomes in Chronic Obstructive Pulmonary Disease. A Longitudinal Observational Study. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 454-461.	2.5	73
11	Prediction of Acute Respiratory Disease in Current and Former Smokers With and Without COPD. Chest, 2014, 146, 941-950.	0.4	71
12	Depression Is Associated with Readmission for Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2016, 13, 197-203.	1.5	71
13	Clinical Epidemiology of COPD. Chest, 2019, 156, 228-238.	0.4	53
14	Pulmonary Artery Enlargement Is Associated With Right Ventricular Dysfunction and Loss of Blood Volume in Small Pulmonary Vessels in Chronic Obstructive Pulmonary Disease. Circulation: Cardiovascular Imaging, 2015, 8, .	1.3	48
15	Chronic rejection of human face allografts. American Journal of Transplantation, 2019, 19, 1168-1177.	2.6	48
16	The matrikine N- \hat{l} ±-PGP couples extracellular matrix fragmentation to endothelial permeability. Science Advances, 2015, 1, .	4.7	39
17	Interstitial Features at Chest CT Enhance the Deleterious Effects of Emphysema in the COPDGene Cohort. Radiology, 2018, 288, 600-609.	3.6	37
18	Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort. JCI Insight, 2020, 5, .	2.3	37

#	Article	IF	Citations
19	Associations Among 25-Hydroxyvitamin DÂLevels, Lung Function, and Exacerbation Outcomes in COPD. Chest, 2020, 157, 856-865.	0.4	35
20	Pulmonary Artery Enlargement Is Associated With Cardiac Injury During Severe Exacerbations of COPD. Chest, 2016, 149, 1197-1204.	0.4	33
21	Sleep disruption as a predictor of quality of life among patients in the subpopulations and intermediate outcome measures in COPD study (SPIROMICS). Sleep, 2018, 41, .	0.6	33
22	Association of e-cigarette use with oral health: a population-based cross-sectional questionnaire study. Journal of Public Health, 2019, 41, 354-361.	1.0	32
23	\hat{l}^2 -Blockers for the prevention of acute exacerbations of chronic obstructive pulmonary disease (\hat{l}^2 LOCK) Tj ETQq1	1.0.78431	l4.rgBT /O
24	Secondary polycythemia in chronic obstructive pulmonary disease: prevalence and risk factors. BMC Pulmonary Medicine, 2021, 21, 235.	0.8	22
25	Clinical, physiologic, and radiographic factors contributing to development of hypoxemia in moderate to severe COPD: a cohort study. BMC Pulmonary Medicine, 2016, 16, 169.	0.8	21
26	GDF-15 plasma levels in chronic obstructive pulmonary disease are associated with subclinical coronary artery disease. Respiratory Research, 2017, 18, 42.	1.4	20
27	Pulmonary artery enlargement and cystic fibrosis pulmonary exacerbations: a cohort study. Lancet Respiratory Medicine, the, 2016, 4, 636-645.	5. 2	19
28	Clinical Phenotypes of Atopy and Asthma in COPD. Chest, 2020, 158, 2333-2345.	0.4	19
29	Benefits of completing pulmonary rehabilitation in patients with asthma. Journal of Asthma, 2015, 52, 969-973.	0.9	18
30	Centrilobular emphysema and coronary artery calcification: mediation analysis in the SPIROMICS cohort. Respiratory Research, 2018, 19, 257.	1.4	18
31	NT-proBNP in stable COPD and future exacerbation risk: Analysis of the SPIROMICS cohort. Respiratory Medicine, 2018, 140, 87-93.	1.3	18
32	Needle Biopsy under Computerized Tomographic Control. Neurosurgery, 1979, 5, 671-674.	0.6	17
33	Risk factors for COPD exacerbations in inhaled medication users: the COPDGene study biannual longitudinal follow-up prospective cohort. BMC Pulmonary Medicine, 2016, 16, 28.	0.8	17
34	Cardiac Morphometry on Computed Tomography and Exacerbation Reduction with \hat{I}^2 -Blocker Therapy in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1484-1488.	2.5	16
35	<p>Clinical Significance of Bronchodilator Responsiveness Evaluated by Forced Vital Capacity in COPD: SPIROMICS Cohort Analysis</p> . International Journal of COPD, 2019, Volume 14, 2927-2938.	0.9	16
36	Loss of the Epigenetic Mark 5-hmC in Psoriasis: Implications for Epidermal Stem Cell Dysregulation. Journal of Investigative Dermatology, 2020, 140, 1266-1275.e3.	0.3	16

#	Article	IF	Citations
37	Small Airway Disease and Emphysema Are Associated with Future Exacerbations in Smokers with CT-derived Bronchiectasis and COPD: Results from the COPDGene Cohort. Radiology, 2021, 300, 706-714.	3.6	16
38	Fibroblast Growth Factor 23 is Associated with a Frequent Exacerbator Phenotype in COPD: A Cross-Sectional Pilot Study. International Journal of Molecular Sciences, 2019, 20, 2292.	1.8	15
39	Pulmonary artery enlargement and mortality risk in moderate to severe COPD: results from COPDGene. European Respiratory Journal, 2020, 55, 1901812.	3.1	15
40	Increased airway iron parameters and risk for exacerbation in COPD: an analysis from SPIROMICS. Scientific Reports, 2020, 10, 10562.	1.6	14
41	Pulmonary artery enlargement is associated with pulmonary hypertension and decreased survival in severe cystic fibrosis: A cohort study. PLoS ONE, 2020, 15, e0229173.	1.1	14
42	Association of plasma mitochondrial DNA with COPD severity and progression in the SPIROMICS cohort. Respiratory Research, 2021, 22, 126.	1.4	14
43	Cardiovascular disease in COPD: a call for action. Lancet Respiratory Medicine, the, 2014, 2, 783-785.	5.2	12
44	The use of a standardized order set reduces systemic corticosteroid dose and length of stay for individuals hospitalized with acute exacerbations of COPD: a cohort study. International Journal of COPD, 2018, Volume 13, 2271-2278.	0.9	12
45	Genetic variation in genes regulating skeletal muscle regeneration and tissue remodelling associated with weight loss in chronic obstructive pulmonary disease. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1803-1817.	2.9	11
46	The Matrikine Acetylated Proline-Glycine-Proline Couples Vascular Inflammation and Acute Cardiac Rejection. Scientific Reports, 2017, 7, 7563.	1.6	10
47	Tristetraprolin Down-Regulation Contributes to Persistent TNF-Alpha Expression Induced by Cigarette Smoke Extract through a Post-Transcriptional Mechanism. PLoS ONE, 2016, 11, e0167451.	1.1	9
48	The matrikine acetyl-proline-glycine-proline and clinical features of COPD: findings from SPIROMICS. Respiratory Research, 2019, 20, 254.	1.4	8
49	Binge Drinking Moderates the Association Between Chronic Lung Disease and E-Cigarette Use. Respiratory Care, 2021, 66, 936-942.	0.8	8
50	Regulation of 5-Hydroxymethylcytosine by TET2 Contributes to Squamous Cell Carcinoma Tumorigenesis. Journal of Investigative Dermatology, 2022, 142, 1270-1279.e2.	0.3	8
51	A Metabolomic Severity Score for Airflow Obstruction and Emphysema. Metabolites, 2022, 12, 368.	1.3	8
52	Induced pluripotent stem cell-derived endothelial cells attenuate lipopolysaccharide-induced acute lung injury. Journal of Applied Physiology, 2019, 127, 444-456.	1.2	7
53	Bringing Stability to the Chronic Obstructive Pulmonary Disease Patient: Clinical and Pharmacological Considerations for Frequent Exacerbators. Drugs, 2017, 77, 651-670.	4.9	6
54	Smaller Left Ventricle Size at Noncontrast CT Is Associated with Lower Mortality in COPDGene Participants. Radiology, 2020, 296, 208-215.	3.6	6

#	Article	IF	Citations
55	POINT: Are Eosinophils Useful for the Management of COPD? Yes. Chest, 2020, 157, 1073-1075.	0.4	6
56	COPD ground zero: small airways rather than alveoli as the initial site of injury. Lancet Respiratory Medicine, the, 2018, 6, 568-569.	5.2	5
57	Inflammation and endothelial activation in early adulthood are associated with future emphysema: the CARDIA Lung Study. European Respiratory Journal, 2019, 53, 1801532.	3.1	5
58	A National Surgical Quality Improvement Program Analysis of Postoperative Major and Minor Complications in Patients with Spinal Metastatic Disease. World Neurosurgery, 2020, 140, e203-e211.	0.7	5
59	Pulmonary Artery Enlargement Is Associated with Exacerbations and Mortality in Ever-Smokers with Preserved Ratio Impaired Spirometry. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 481-485.	2.5	5
60	Differential distribution of the epigenetic marker 5â€hydroxymethylcytosine occurs in hair follicle stem cells during bulge activation. Journal of Cutaneous Pathology, 2019, 46, 327-334.	0.7	4
61	Heme metabolism genes Downregulated in COPD Cachexia. Respiratory Research, 2020, 21, 100.	1.4	4
62	Prolyl endopeptidase contributes to early neutrophilic inflammation in acute myocardial transplant rejection. JCl Insight, $2021, 6, .$	2.3	3
63	The immunological response among COVID-19 patients with acute respiratory distress syndrome. Journal of Infection and Public Health, 2021, 14, 954-959.	1.9	3
64	Supportive care of right ventricular failure due to fat embolism syndrome. Respiratory Medicine Case Reports, 2021, 34, 101499.	0.2	2
65	Deciphering COPD and associated cardiovascular impairment. Lancet Respiratory Medicine, the, 2018, 6, 320-322.	5.2	1
66	Histologic features of graft-versus-host disease-associated angiomatosis: Insights into pathophysiology and treatment. Journal of the American Academy of Dermatology, 2020, 83, 914-917.	0.6	1
67	Practical recommendations for the use of beta-blockers in chronic obstructive pulmonary disease. Expert Review of Respiratory Medicine, 2020, 14, 671-678.	1.0	1
68	Mind the Gap: Addressing Cardiovascular Disease in Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2022, 19, 1093-1095.	1.5	1
69	In Rotterdam, size really does matter: implications of pulmonary artery enlargement on mortality. European Respiratory Journal, 2017, 49, 1700750.	3.1	0
70	Velocity Transfer Function In The Right Pulmonary Artery And Impaired Cardiopulmonary Reserve In COPD. International Journal of COPD, 2019, Volume 14, 2753-2757.	0.9	0
71	Rebuttal From Drs Wade and Wells. Chest, 2020, 157, 1078-1079.	0.4	0
72	Telemedicine for Patients with Chronic Pulmonary Diseases in the COVID-19 Era and Beyond. Annals of the American Thoracic Society, 2022, , .	1.5	0