Shinsuke Kunitsugu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2208517/publications.pdf

Version: 2024-02-01

1306789 1058022 29 202 14 7 citations h-index g-index papers 29 29 29 223 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultra-high-rate deposition of diamond-like carbon films using Ar/C ₂ H ₂ plasma jet CVD in combination with substrate-stage discharge. Japanese Journal of Applied Physics, 2022, 61, SI1001.	0.8	4
2	Characterization of Hydrogen-Free and Hydrogenated DLC Films. , 2021, , 55-69.		0
3	Electrical resistivity and mechanical properties of nitrogen-containing diamondlike carbon/tungsten and nitrogen-containing diamondlike carbon/tungsten carbide multilayer films prepared under low substrate temperature. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 011801.	0.6	0
4	Wear-resistive and electrically conductive nitrogen-containing DLC film consisting of ultra-thin multilayers prepared by using filtered arc deposition. Japanese Journal of Applied Physics, 2019, 58, SEED05.	0.8	8
5	Improvement of adhesion of hydrogen-free DLC film by employing an interlayer of tungsten carbide. AIP Conference Proceedings, 2018, , .	0.3	5
6	Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film. Japanese Journal of Applied Physics, 2018, 57, 01AE07.	0.8	6
7	Preparation of multi-layer film consisting of hydrogen-free DLC and nitrogen-containing DLC for conductive hard coating. AIP Conference Proceedings, 2018, , .	0.3	5
8	Friction wear characteristics of diamond-like carbon coatings in oils containing molybdenum dialkyldithiocarbamate additive. Wear, 2018, 414-415, 118-125.	1.5	15
9	Tribological characteristic of DLC thin films for medical devices. The Proceedings of Conference of Chugoku-Shikoku Branch, 2017, 2017.55, K0106.	0.0	O
10	Differentiation of Osteoblast and Osteoclast Cells on Hydrogenated-Tetrahedral Amorphous Carbon Coated Titanium. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 413-418.	0.1	5
11	Development of New Hydrogen-containing Tetrahydral Amorphous Carbon Thin Films using Cathodic Arc Plasma for Dental Implant. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 471-474.	0.1	4
12	High-pressure and high-temperature synthesis of rhenium carbide using rhenium and nanoscale amorphous two-dimensional carbon nitride. Cogent Physics, 2015, 2, 1076702.	0.7	9
13	Pretreatment Prior to PVD Coating of the Surface of Cold Working Die Steel. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2013, 64, 677-681.	0.1	1
14	High Functional Coatings on Aluminum Alloy. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2012, 63, 163.	0.1	2
15	Study of White-LED Using Amorphous Carbon Nitride Grown by RF-sputtering and ECR-plasma CVD. Journal of Light and Visual Environment, 2011, 35, 86-89.	0.2	2
16	Crystal Structure of New Carbon–Nitride-Related Material C ₂ N ₂ (CH ₂). Japanese Journal of Applied Physics, 2011, 50, 095503.	0.8	1
17	First Principles Calculation on the Surface Energy of Metal Nitride with NaCl Structure. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2010, 61, 535-540.	0.1	6
18	Dual-Gate Field-Effect Transistor Hydrogen Gas Sensor with Thermal Compensation. Japanese Journal of Applied Physics, 2010, 49, 024206.	0.8	24

#	Article	IF	CITATIONS
19	Development and Evaluation of a Pt/Ti-FET-Type Hydrogen Sensor. IEEJ Transactions on Sensors and Micromachines, 2010, 130, 407-411.	0.0	1
20	Evaluation of Adhesions of DLC/CrN Multi-layered Coatings on Stainless Steel. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2009, 60, 527-532.	0.1	3
21	Study of Amorphous Carbon Nitride Films Aiming at White Light Emitting Devices. Japanese Journal of Applied Physics, 2008, 47, 7842.	0.8	53
22	Facing target sputtered iron-silicide thin film. Thin Solid Films, 2007, 515, 8205-8209.	0.8	20
23	Oxidation Resistance of Mo Coated with Mo(Si,Al) < SUB > 2 < SUB > Layer Prepared by Dipping into Liquid of Al-25 mass%Si alloy. Materials Transactions, 2005, 46, 215-218.	0.4	4
24	Formation of Mo(Si,Al)2 Coating on Surface of Mo Thin Plate by Dip-coating Technique Using Al-25mass%Si Liquid at 1073K. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2005, 52, 658-663.	0.1	0
25	Evaluation of Wettability of PVD Coatings for Molten Polymer. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2004, 55, 214-217.	0.1	2
26	Effect of Polysilazane Coating on CO2 Laser Melting of Aluminum Alloys Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 1999, 50, 941-942.	0.1	0
27	Improvement of Efficency on CO2 Laser Working of Aluminum Alloys by Transparent Film Coating Materia Japan, 1999, 38, 722-723.	0.1	0
28	NO ₂ Sensing Properties of Thick Zn ₂ SnO ₄ Film. Journal of the Ceramic Society of Japan, 1995, 103, 302-303.	1.3	22
29	Microstructure and NO ₂ Sensing Properties of Fe ₂ O ₃ Thin Films. Journal of the Ceramic Society of Japan, 1994, 102, 185-188.	1.3	0