Si-Xue Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2208487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Situ Detection of Nanotoxicity in Living Cells Based on Multiple miRNAs Probed by a Peptide Functionalized Nanoprobe. Analytical Chemistry, 2022, 94, 2399-2407.	3.2	4
2	A targeting delivery system for effective genome editing in leukemia cells to reverse malignancy. Journal of Controlled Release, 2022, 343, 645-656.	4.8	11
3	Functional Tumor Targeting Nanoâ€Systems for Reprogramming Circulating Tumor Cells with In Situ Evaluation on Therapeutic Efficiency at the Singleâ€Cell Level. Advanced Science, 2022, 9, .	5.6	8
4	Codelivery of HBx-siRNA and Plasmid Encoding IL-12 for Inhibition of Hepatitis B Virus and Reactivation of Antiviral Immunity. Pharmaceutics, 2022, 14, 1439.	2.0	3
5	A Strategy Based on the Enzyme-Catalyzed Polymerization Reaction of Asp-Phe-Tyr Tripeptide for Cancer Immunotherapy. Journal of the American Chemical Society, 2021, 143, 5127-5140.	6.6	39
6	An Albumin-Based Therapeutic Nanosystem for Photosensitizer/Protein Co-Delivery to Realize Synergistic Cancer Therapy. ACS Applied Bio Materials, 2021, 4, 4946-4952.	2.3	2
7	Nanoparticle-Mediated Inhibition of Mitochondrial Glutaminolysis to Amplify Oxidative Stress for Combination Cancer Therapy. Nano Letters, 2021, 21, 7569-7578.	4.5	37
8	Direct detection of intracellular miRNA in living circulating tumor cells by tumor targeting nanoprobe in peripheral blood. Biosensors and Bioelectronics, 2021, 190, 113401.	5.3	18
9	Facile Strategy To Enhance Specificity and Sensitivity of Molecular Beacons by an Aptamer-Functionalized Delivery Vector. Analytical Chemistry, 2020, 92, 2088-2096.	3.2	29
10	Controllable gelation of artificial extracellular matrix for altering mass transport and improving cancer therapies. Nature Communications, 2020, 11, 4907.	5.8	29
11	Inhibition of Tumor Progression through the Coupling of Bacterial Respiration with Tumor Metabolism. Angewandte Chemie - International Edition, 2020, 59, 21562-21570.	7.2	98
12	Yolk‣hell Structured Nanoflowers Induced Intracellular Oxidative/Thermal Stress Damage for Cancer Treatment. Advanced Functional Materials, 2020, 30, 2006098.	7.8	46
13	Nearâ€Infrared Triggered Cascade of Antitumor Immune Responses Based on the Integrated Core–Shell Nanoparticle. Advanced Functional Materials, 2020, 30, 2000335.	7.8	29
14	Self-Assembled Plasmid Delivery System for PPM1D Knockout to Reverse Tumor Malignancy. ACS Applied Bio Materials, 2020, 3, 7831-7839.	2.3	3
15	Tumorâ€Microenvironmentâ€Triggered Ion Exchange of a Metal–Organic Framework Hybrid for Multimodal Imaging and Synergistic Therapy of Tumors. Advanced Materials, 2020, 32, e2001452.	11.1	92
16	Vascular disrupting agent induced aggregation of gold nanoparticles for photothermally enhanced tumor vascular disruption. Science Advances, 2020, 6, eabb0020.	4.7	60
17	Aptamer/Peptideâ€Functionalized Genomeâ€Editing System for Effective Immune Restoration through Reversal of PD‣1â€Mediated Cancer Immunosuppression. Advanced Materials, 2020, 32, e2000208.	11.1	94
18	An RGB-emitting molecular cocktail for the detection of bacterial fingerprints. Chemical Science, 2020, 11, 4403-4409.	3.7	24

#	Article	IF	CITATIONS
19	A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Nature Communications, 2020, 11, 1985.	5.8	55
20	Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nature Biomedical Engineering, 2019, 3, 717-728.	11.6	229
21	Multifunctional Albumin-Based Delivery System Generated by Programmed Assembly for Tumor-Targeted Multimodal Therapy and Imaging. ACS Applied Materials & Interfaces, 2019, 11, 38385-38394.	4.0	51
22	A hybrid nanomaterial with NIR-induced heat and associated hydroxyl radical generation for synergistic tumor therapy. Biomaterials, 2019, 199, 1-9.	5.7	40
23	Peptide and Aptamer Decorated Delivery System for Targeting Delivery of Cas9/sgRNA Plasmid To Mediate Antitumor Genome Editing. ACS Applied Materials & Interfaces, 2019, 11, 23870-23879.	4.0	17
24	Targeting Delivery of Oligodeoxynucleotides to Macrophages by Mannosylated Cationic Albumin for Immune Stimulation in Cancer Treatment. Molecular Pharmaceutics, 2019, 16, 2616-2625.	2.3	14
25	Biomedical Materials: Engineered Bacterial Bioreactor for Tumor Therapy via Fentonâ€Like Reaction with Localized H ₂ O ₂ Generation (Adv. Mater. 16/2019). Advanced Materials, 2019, 31, 1970119.	11.1	14
26	Engineered Bacterial Bioreactor for Tumor Therapy via Fenton‣ike Reaction with Localized H ₂ O ₂ Generation. Advanced Materials, 2019, 31, e1808278.	11.1	252
27	Multifunctional Vector for Delivery of Genome Editing Plasmid Targeting β-Catenin to Remodulate Cancer Cell Properties. ACS Applied Materials & Interfaces, 2019, 11, 226-237.	4.0	27
28	A Dual-Targeting Delivery System for Effective Genome Editing and In Situ Detecting Related Protein Expression in Edited Cells. Biomacromolecules, 2018, 19, 2957-2968.	2.6	50
29	Optically-controlled bacterial metabolite for cancer therapy. Nature Communications, 2018, 9, 1680.	5.8	212
30	Reversal of tumor malignization and modulation of cell behaviors through genome editing mediated by a multi-functional nanovector. Nanoscale, 2018, 10, 21209-21218.	2.8	19
31	Peptideâ€Based Multifunctional Nanomaterials for Tumor Imaging and Therapy. Advanced Functional Materials, 2018, 28, 1804492.	7.8	94
32	Tumor targeted genome editing mediated by a multi-functional gene vector for regulating cell behaviors. Journal of Controlled Release, 2018, 291, 90-98.	4.8	34
33	Hierarchical Microâ€∤Nanostructures from Human Hair for Biomedical Applications. Advanced Materials, 2018, 30, e1800836.	11.1	42
34	A multi-functional macrophage and tumor targeting gene delivery system for the regulation of macrophage polarity and reversal of cancer immunoresistance. Nanoscale, 2018, 10, 15578-15587.	2.8	51
35	Aptamer-functionalized albumin-based nanoparticles for targeted drug delivery. Colloids and Surfaces B: Biointerfaces, 2018, 171, 24-30.	2.5	54
36	Overcoming the Heat Endurance of Tumor Cells by Interfering with the Anaerobic Glycolysis Metabolism for Improved Photothermal Therapy. ACS Nano, 2017, 11, 1419-1431.	7.3	284

#	Article	IF	CITATIONS
37	Multifunctional Nanosystem for Synergistic Tumor Therapy Delivered by Two-Dimensional MoS ₂ . ACS Applied Materials & Interfaces, 2017, 9, 13965-13975.	4.0	80
38	Targeting epithelial-mesenchymal transition: Metal organic network nano-complexes for preventing tumor metastasis. Biomaterials, 2017, 139, 116-126.	5.7	54
39	Fusion peptide functionalized hybrid nanoparticles for synergistic drug delivery to reverse cancer drug resistance. Journal of Materials Chemistry B, 2017, 5, 4697-4704.	2.9	15
40	Functional polymer/inorganic hybrid nanoparticles for macrophage targeting delivery of oligodeoxynucleotides in cancer immunotherapy. Materials Today Chemistry, 2017, 4, 106-116.	1.7	26
41	Switching Apoptosis to Ferroptosis: Metal–Organic Network for High-Efficiency Anticancer Therapy. Nano Letters, 2017, 17, 284-291.	4.5	359
42	Universal Porphyrinic Metal–Organic Framework Coating to Various Nanostructures for Functional Integration. ACS Applied Materials & Interfaces, 2017, 9, 43143-43153.	4.0	29
43	A Dual Macrophage Targeting Nanovector for Delivery of Oligodeoxynucleotides To Overcome Cancer-Associated Immunosuppression. ACS Applied Materials & Interfaces, 2017, 9, 42566-42576.	4.0	48
44	A Metal–Polyphenol Network Coated Nanotheranostic System for Metastatic Tumor Treatments. Small, 2017, 13, 1702714.	5.2	56
45	Tumor Targeting Synergistic Drug Delivery by Self-Assembled Hybrid Nanovesicles to Overcome Drug Resistance. Pharmaceutical Research, 2017, 34, 148-160.	1.7	16
46	Drug self-delivery systems for cancer therapy. Biomaterials, 2017, 112, 234-247.	5.7	443
47	Co-delivery of multiple drug resistance inhibitors by polymer/inorganic hybrid nanoparticles to effectively reverse cancer drug resistance. Colloids and Surfaces B: Biointerfaces, 2017, 149, 250-259.	2.5	28
48	Tumor Targeting: Programmed Nanococktail for Intracellular Cascade Reaction Regulating Self‧ynergistic Tumor Targeting Therapy (Small 6/2016). Small, 2016, 12, 828-828.	5.2	4
49	Programmed Nanococktail for Intracellular Cascade Reaction Regulating Self‣ynergistic Tumor Targeting Therapy. Small, 2016, 12, 733-744.	5.2	47
50	pH-Activated Targeting Drug Delivery System Based on the Selective Binding of Phenylboronic Acid. ACS Applied Materials & Interfaces, 2016, 8, 14845-14854.	4.0	56
51	Tumor-Triggered Drug Release with Tumor-Targeted Accumulation and Elevated Drug Retention To Overcome Multidrug Resistance. Chemistry of Materials, 2016, 28, 6742-6752.	3.2	61
52	Biotinylated carboxymethyl chitosan/CaCO3 hybrid nanoparticles for targeted drug delivery to overcome tumor drug resistance. RSC Advances, 2016, 6, 69083-69093.	1.7	25
53	Highly Integrated Nano-Platform for Breaking the Barrier between Chemotherapy and Immunotherapy. Nano Letters, 2016, 16, 4341-4347.	4.5	96
54	A surface charge-switchable and folate modified system for co-delivery of proapoptosis peptide and p53 plasmid in cancer therapy. Biomaterials, 2016, 77, 149-163.	5.7	86

#	Article	IF	CITATIONS
55	Smart and hyper-fast responsive polyprodrug nanoplatform for targeted cancer therapy. Biomaterials, 2016, 76, 238-249.	5.7	88
56	Bioinspired Nano-Prodrug with Enhanced Tumor Targeting and Increased Therapeutic Efficiency. Small, 2015, 11, 5230-5242.	5.2	34
57	Self-defensive nano-assemblies from camptothecin-based antitumor drugs. International Journal of Energy Production and Management, 2015, 2, 159-166.	1.9	21
58	A Tumor Targeted Chimeric Peptide for Synergistic Endosomal Escape and Therapy by Dual‣tage Light Manipulation. Advanced Functional Materials, 2015, 25, 1248-1257.	7.8	103
59	Dual-Peptide-Functionalized Albumin-Based Nanoparticles with pH-Dependent Self-Assembly Behavior for Drug Delivery. ACS Applied Materials & Interfaces, 2015, 7, 15148-15153.	4.0	65
60	Self-Assembled Polymer/Inorganic Hybrid Nanovesicles for Multiple Drug Delivery To Overcome Drug Resistance in Cancer Chemotherapy. Langmuir, 2015, 31, 5115-5122.	1.6	64
61	Multiâ€functional heparin–biotin/heparin/calcium carbonate/calcium phosphate nanoparticles for targeted coâ€delivery of gene and drug. Polymer International, 2015, 64, 647-653.	1.6	13
62	A self-assembled albumin based multiple drug delivery nanosystem to overcome multidrug resistance. RSC Advances, 2015, 5, 6807-6814.	1.7	16
63	Syntheses and properties of novel copolymers of polycaprolactone and aliphatic polycarbonate based on ketal-protected dihydroxyacetone. Polymer Bulletin, 2014, 71, 47-56.	1.7	6
64	Modification of nanostructured calcium carbonate for efficient gene delivery. Colloids and Surfaces B: Biointerfaces, 2014, 118, 111-116.	2.5	33
65	Switch on/off microcapsules for controllable photosensitive drug release in a â€~release-cease-recommence' mode. Polymer Chemistry, 2014, 5, 4396.	1.9	106
66	Multi-drug delivery system based on alginate/calcium carbonate hybrid nanoparticles for combination chemotherapy. Colloids and Surfaces B: Biointerfaces, 2014, 123, 498-505.	2.5	80
67	Protamine sulfate–calcium carbonate–plasmid DNA ternary nanoparticles for efficient gene delivery. Molecular BioSystems, 2014, 10, 672.	2.9	33
68	Dual-functionalized calcium carbonate based gene delivery system for efficient gene delivery. RSC Advances, 2014, 4, 38623-38629.	1.7	19
69	Peptide decorated calcium phosphate/carboxymethyl chitosan hybrid nanoparticles with improved drug delivery efficiency. International Journal of Pharmaceutics, 2013, 446, 205-210.	2.6	40
70	Self-assembled inorganic/organic hybrid nanoparticles with multi-functionalized surfaces for active targeting drug delivery. Journal of Materials Chemistry B, 2013, 1, 4243.	2.9	31
71	Dual-Targeting Pro-apoptotic Peptide for Programmed Cancer Cell Death via Specific Mitochondria Damage. Scientific Reports, 2013, 3, 3468.	1.6	85
72	Synthesis and hydrolytic degradation of aliphatic polycarbonate based on dihydroxyacetone. Polymer Science - Series B, 2013, 55, 604-610.	0.3	17

#	Article	IF	CITATIONS
73	Facile preparation of heparin/CaCO3/CaP hybrid nano-carriers with controllable size for anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2013, 102, 783-788.	2.5	59
74	Cyclodextrin-Responsive Micelles Based on Poly(ethylene glycol)–Polypeptide Hybrid Copolymers as Drug Carriers. ACS Macro Letters, 2013, 2, 201-205.	2.3	45
75	Syntheses and Properties of Novel Copolymers of Polylactide and Aliphatic Polycarbonate Based on Ketal-Protected Dihydroxyacetone. Polymer-Plastics Technology and Engineering, 2013, 52, 1063-1067.	1.9	4
76	Syntheses and Properties of Novel Copolymers of Poly(1,4â€dioxaneâ€2â€one) and Aliphatic Polycarbonate Based on Ketalâ€Protected Dihydroxyacetone. Macromolecular Chemistry and Physics, 2013, 214, 458-463.	1.1	3
77	Modification of calcium carbonate based gene and drug delivery systems by a cell-penetrating peptide. Molecular BioSystems, 2012, 8, 3288.	2.9	30
78	Alginate modified nanostructured calcium carbonate with enhanced delivery efficiency for gene and drug delivery. Molecular BioSystems, 2012, 8, 753-759.	2.9	83
79	Reduction-sensitive polypeptides incorporated with nuclear localization signal sequences for enhanced gene delivery. Journal of Materials Chemistry, 2012, 22, 13591.	6.7	16
80	Alginate/CaCO ₃ Hybrid Nanoparticles for Efficient Codelivery of Antitumor Gene and Drug. Molecular Pharmaceutics, 2012, 9, 2887-2893.	2.3	85
81	Redox-sensitive shell cross-linked PEG–polypeptide hybrid micelles for controlled drug release. Polymer Chemistry, 2012, 3, 1084.	1.9	111
82	Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy. RSC Advances, 2012, 2, 1820.	1.7	57
83	Host–Guest Assembly of pH-Responsive Degradable Microcapsules with Controlled Drug Release Behavior. Journal of Physical Chemistry C, 2011, 115, 17651-17659.	1.5	62
84	Dual-vectors of anti-cancer drugs and genes based on pH-sensitive micelles self-assembled from hybrid polypeptide copolymers. Journal of Materials Chemistry, 2011, 21, 3100.	6.7	42
85	Self-assembled complexes with dual-targeting properties for gene delivery. Journal of Materials Chemistry, 2011, 21, 4636.	6.7	8
86	Efficient non-viral gene delivery mediated by nanostructured calcium carbonate in solution-based transfection and solid-phase transfection. Molecular BioSystems, 2011, 7, 2841.	2.9	33
87	Fabrication of multifunctional shell cross-linked micelles for targeting drug release. Colloid and Polymer Science, 2011, 289, 667-675.	1.0	13
88	Selfâ€Assembly Strategy for the Preparation of Polymerâ€Based Nanoparticles for Drug and Gene Delivery. Macromolecular Bioscience, 2011, 11, 576-589.	2.1	78
89	Synthesis and characterization of poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 107 Td (glycol)â copolymers as efficient gene delivery vectorsÂ. Journal of Applied Polymer Science, 2011, 121, 666-674.	€ < i>b 1.3	â€poly(εâ€ca 3
90	Fabrication and drug release properties of poly(5-benzyloxy-trimethylene-co-glycolide) microspheres. Journal of Applied Polymer Science, 2010, 115, 3451-3455.	1.3	3

#	Article	IF	CITATIONS
91	Enhanced gene transfection with addition of a cellâ€penetrating peptide in substrateâ€mediated gene delivery. Journal of Gene Medicine, 2010, 12, 705-713.	1.4	7
92	PEI grafted hyperbranched polymers with polyglycerol as a core for gene delivery. Colloids and Surfaces B: Biointerfaces, 2010, 76, 427-433.	2.5	33
93	Fabrication of microparticle protein delivery systems based on calcium alginate. Journal of Microencapsulation, 2010, 27, 171-177.	1.2	19
94	Gene expression mediated by dendrimer/DNA complexes encapsulated in biodegradable polymer microspheres. Journal of Microencapsulation, 2010, 27, 345-354.	1.2	6
95	Calcium Carbonate/Carboxymethyl Chitosan Hybrid Microspheres and Nanospheres for Drug Delivery. Journal of Physical Chemistry C, 2010, 114, 18940-18945.	1.5	157
96	Dual targeting of a thermosensitive nanogel conjugated with transferrin and RGD-containing peptide for effective cell uptake and drug release. Nanotechnology, 2009, 20, 335101.	1.3	47
97	Temperature―and pHâ€Sensitive Multicolored Micellar Complexes. Advanced Materials, 2009, 21, 2402-2406.	11.1	50
98	Calcium phosphate/DNA coâ€precipitates encapsulated fastâ€degrading polymer films for substrateâ€mediated gene delivery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 172-180.	1.6	15
99	Water Soluble Polymer Protected Lipofectamine 2000/DNA Complexes for Solidâ€Phase Transfection. Macromolecular Bioscience, 2009, 9, 1262-1271.	2.1	11
100	Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Progress in Polymer Science, 2009, 34, 893-910.	11.8	643
101	Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property. Colloids and Surfaces B: Biointerfaces, 2009, 68, 245-249.	2.5	153
102	Temperature and pH Double Responsive Hybrid Cross-Linked Micelles Based on P(NIPAAm- <i>co</i> -MPMA)- <i>b</i> -P(DEA): RAFT Synthesis and "Schizophrenic―Micellization. Macromolecules, 2009, 42, 4838-4844.	2.2	109
103	Hybrid Nanospheres and Vesicles Based on Pectin as Drug Carriers. Langmuir, 2009, 25, 11720-11726.	1.6	59
104	Heparin-modified PEI encapsulated in thermosensitive hydrogels for efficient gene delivery and expression. Journal of Materials Chemistry, 2009, 19, 3189.	6.7	32
105	Three-dimensional fast-degrading polymer films for delivery of calcium phosphate/DNA co-precipitates in solid-phase transfection. Journal of Materials Chemistry, 2009, 19, 6733.	6.7	9
106	Fabrication of thermosensitive PCLâ€PNIPAAmâ€PCL triblock copolymeric micelles for drug delivery. Journal of Polymer Science Part A, 2008, 46, 3048-3057.	2.5	103
107	"Click―chemistry for <i>in situ</i> formation of thermoresponsive P(NIPAAmâ€ <i>co</i> â€HEMA)â€based hydrogels. Journal of Polymer Science Part A, 2008, 46, 5263-5277.	2.5	53
108	Bioactive Amphiphilic Peptide Derivatives with pH Triggered Morphology and Structure. Macromolecular Rapid Communications, 2008, 29, 1726-1731.	2.0	36

#	Article	IF	CITATIONS
109	Dendrimer/DNA complexes encapsulated functional biodegradable polymer for substrateâ€mediated gene delivery. Journal of Gene Medicine, 2008, 10, 1334-1342.	1.4	34
110	A lowâ€ŧoxic and efficient gene vector: Carboxymethyl dextranâ€ <i>graft</i> â€polyethylenimine. Journal of Biomedical Materials Research - Part A, 2008, 84A, 1102-1110.	2.1	48
111	Ringâ€opening copolymerization and properties of polycarbonate copolymers. Journal of Applied Polymer Science, 2008, 108, 93-98.	1.3	21
112	Functionalized Amphiphilic Hyperbranched Polymers for Targeted Drug Delivery. Biomacromolecules, 2008, 9, 2578-2585.	2.6	253
113	Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels. Soft Matter, 2008, 4, 385.	1.2	154
114	Novel polycationic micelles for drug delivery and gene transfer. Journal of Materials Chemistry, 2008, 18, 4433.	6.7	67
115	Fabrication of Nanospheres and Vesicles as Drug Carriers by Self-Assembly of Alginate. Journal of Physical Chemistry C, 2008, 112, 16774-16778.	1.5	59
116	Novel Solvent-Free Methods for Fabrication of Nano- and Microsphere Drug Delivery Systems from Functional Biodegradable Polymers. Journal of Physical Chemistry C, 2007, 111, 12681-12685.	1.5	17
117	Fabrication of a novel pH-sensitive glutaraldehyde cross-linked pectin nanogel for drug delivery. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1591-1599.	1.9	43
118	Self-assembled thermosensitive micelles based on poly(L-lactide-star block-N-isopropylacrylamide) for drug delivery. Journal of Biomedical Materials Research - Part A, 2007, 83A, 980-989.	2.1	48
119	Novel cholic acid functionalized star oligo/poly(DL-lactide)s for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 82B, 400-407.	1.6	37
120	Cholic acid functionalized star poly(DL-lactide) for promoting cell adhesion and proliferation. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 368-376.	1.3	24
121	Synthesis and characterization of a biodegradable amphiphilic copolymer based on branched poly(ϵâ€caprolactone) and poly(ethylene glycol). Journal of Polymer Science Part A, 2007, 45, 5256-5265.	2.5	37
122	Synthesis and characterization of wellâ€defined, amphiphilic poly(<i>N</i> â€isopropylacrylamide)â€ <i>b</i> â€[2â€hydroxyethyl methacrylateâ€poly(lµâ€caprolactone)] <i>_n</i> graft copolymers by RAFT polymerization and macromonomer method. Journal of Polymer Science Part A, 2007, 45, 5354-5364.	2.5	62
123	Dendrimer/DNA complexes encapsulated in a water soluble polymer and supported on fast degrading star poly(dl-lactide) for localized gene delivery. Journal of Controlled Release, 2007, 124, 181-188.	4.8	47
124	Study on Drug Release Behaviors of Poly-α,β-[N-(2-hydroxyethyl)-l-aspartamide]-g-poly(ε-caprolactone) Nano- and Microparticles. Biomacromolecules, 2006, 7, 2020-2026.	2.6	35
125	Thermosensitive Y-Shaped Micelles of Poly(oleic acid-Y-N-isopropylacrylamide) for Drug Delivery. Small, 2006, 2, 917-923.	5.2	87
126	Synthesis and characterization of star oligo/poly(2,2-dimethyltrimethylene carbonate)s containing cholic acid moieties. Journal of Polymer Science Part A, 2006, 44, 6688-6696.	2.5	18

#	Article	IF	CITATIONS
127	Synthesis and characterization of poly-α,β-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(glycolide) amphiphilic graft copolymers as potential drug carriers. Colloid and Polymer Science, 2006, 284, 834-842.	1.0	4
128	Fabrication of novel temperature and pH sensitive poly (N-isopropylmaleamic acid-co-acrylonitrile) hydrogels. Colloid and Polymer Science, 2006, 285, 75-82.	1.0	19
129	Self-Assembled, Thermosensitive PCL-g-P(NIPAAm-co-HEMA) Micelles for Drug Delivery. Macromolecular Rapid Communications, 2006, 27, 1913-1919.	2.0	54
130	Synthesis and enzymatic degradation of end-functionalized biodegradable polyesters. Colloid and Polymer Science, 2005, 283, 1091-1099.	1.0	19
131	Synthesis and characterization of novel biodegradable amphiphilic graft polymers based on aliphatic polycarbonate. Journal of Polymer Science Part A, 2004, 42, 1356-1361.	2.5	21
132	Preparation and properties of poly(N -isopropylacrylamide)/poly(N -isopropylacrylamide) interpenetrating polymer networks for drug delivery. Journal of Polymer Science Part A, 2004, 42, 1249-1254.	2.5	71
133	Preparation, properties, and mathematical modeling of microparticle drug delivery systems based on biodegradable amphiphilic triblock copolymers. Journal of Applied Polymer Science, 2004, 92, 3869-3873.	1.3	21
134	Novel Biodegradable Aliphatic Polycarbonate Based on Ketal Protected Dihydroxyacetone. Macromolecular Rapid Communications, 2004, 25, 959-963.	2.0	32
135	Molecular design of liquid crystalline poly(ester-amide)s with perfluoroalkyl spacers. Liquid Crystals, 2004, 31, 871-881.	0.9	3
136	Poly(vinyl alcohol)/poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels with rapid response to temperature changes. Colloid and Polymer Science, 2003, 281, 580-583.	1.0	66
137	Macroporous poly(N-isopropylacrylamide) hydrogels with fast response rates and improved protein release properties. Journal of Biomedical Materials Research Part B, 2003, 67A, 96-103.	3.0	93
138	Synthesis and Characterization of Novel Biodegradable Copolymers of 5-Benzyloxy-1,3-dioxan-2-one and Glycolide. Macromolecular Rapid Communications, 2003, 24, 1066-1069.	2.0	19
139	Temperature-Sensitive Poly(N-isopropylacrylamide) Hydrogels with Macroporous Structure and Fast Response Rate. Macromolecular Rapid Communications, 2003, 24, 447-451.	2.0	105
140	Gas-sorption properties of 6FDA-durene/1,4-phenylenediamine (pPDA) and 6FDA-durene/1,3-phenylenediamine (mPDA) copolyimides. Journal of Applied Polymer Science, 2003, 90, 2187-2193.	1.3	39
141	Thin-film polymerization and characterization of Sumitomo's Sumikasuper®-type liquid crystalline polymers. Liquid Crystals, 2003, 30, 753-764.	0.9	2
142	Investigation of the Effect of an Ether Moiety on the Liquid Crystallinity by Thin Film Polymerization. Macromolecular Chemistry and Physics, 2002, 203, 122-128.	1.1	1