Xiaobo Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2208353/publications.pdf

Version: 2024-02-01

25 2,877 21 23 papers citations h-index g-index

25 25 25 2721 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Design concept for electrocatalysts. Nano Research, 2022, 15, 1730-1752.	5.8	396
2	Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. , 2022, $1,100013.$		273
3	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie, 2022, 134, .	1.6	27
4	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2022, 61, .	7.2	127
5	Enriched <i>d< i>â€Band Holes Enabling Fast Oxygen Evolution Kinetics on Atomicâ€Layered Defectâ€Rich Lithium Cobalt Oxide Nanosheets. Advanced Functional Materials, 2022, 32, .</i>	7.8	24
6	Ru–Co Pair Sites Catalyst Boosts the Energetics for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	154
7	Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Research, 2022, 15, 7806-7839.	5.8	201
8	Recent Progress in Thermal Conversion of CO ₂ via Singleâ€Atom Site Catalysis. Small Structures, 2022, 3, .	6.9	44
9	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	15.6	198
10	Understanding the structural and chemical evolution of layered potassium titanates for sodium ion batteries. Energy Storage Materials, 2020, 25, 502-509.	9.5	17
11	Multifunctional Active enterâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie, 2020, 132, 14641-14648.	1.6	17
12	Multifunctional Activeâ€Centerâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 14533-14540.	7.2	152
13	Electrocatalytically inactive SnS2 promotes water adsorption/dissociation on molybdenum dichalcogenides for accelerated alkaline hydrogen evolution. Nano Energy, 2019, 64, 103918.	8.2	58
14	Direct Hybridization of Noble Metal Nanostructures on 2D Metal–Organic Framework Nanosheets To Catalyze Hydrogen Evolution. Nano Letters, 2019, 19, 8447-8453.	4.5	160
15	Electronic Structure Engineering of LiCoO ₂ toward Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2019, 9, 1803482.	10.2	85
16	Electrochemical potassium/lithium-ion intercalation into TiSe2: Kinetics and mechanism. Energy Storage Materials, 2019, 16, 512-518.	9.5	84
17	New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries. Energy Storage Materials, 2018, 15, 257-265.	9.5	86
18	Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Materials, 2018, 15, 422-446.	9.5	292

#	Article	IF	CITATION
19	Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery. Electrochimica Acta, 2016, 191, 832-840.	2.6	131
20	Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials obtained by atomization co-precipitation method. Ceramics International, 2016, 42, 644-649.	2.3	39
21	Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by ultrasonic-assisted co-precipitation method. Journal of Alloys and Compounds, 2015, 644, 607-614.	2.8	35
22	Multifunctional Li2O-2B2O3 coating for enhancing high voltage electrochemical performances and thermal stability of layered structured LiNiO.5CoO.2MnO.3O2 cathode materials for lithium ion batteries. Electrochimica Acta, 2015, 174, 1225-1233.	2.6	69
23	Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochimica Acta, 2015, 182, 795-802.	2.6	149
24	Structural and electrochemical properties of Mg-doped nickel based cathode materials LiNi $<$ sub $>$ 0.6 $<$ /sub $>$ Co $<$ sub $>$ 0.2 $<$ /sub $>$ Mn $<$ sub $>$ 0.2 $=$ 2 $<$ 8ub $>$ Mg $<$ sub $>$ x $<$ 8ub $>$ Co $<$ sub $>$ 2 $<$ 8ub $>$ for lithium ion batteries. RSC Advances, 2015, 5, 88773-88779.	1.7	47
25	Ruâ€Co Pair Sites Catalyst Boosts the Energetics for Oxygen Evolution Reaction. Angewandte Chemie, 0,	1.6	12