
Adam B Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2207991/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL. Nuclear Engineering and Technology, 2014, 46, 169-182.	1.1	128
2	Transmission electron microscopy characterization of irradiated U–7Mo/Al–2Si dispersion fuel. Journal of Nuclear Materials, 2010, 396, 234-239.	1.3	100
3	Microstructural development in irradiated U-7Mo/6061 Al alloy matrix dispersion fuel. Journal of Nuclear Materials, 2009, 393, 311-320.	1.3	69
4	Fission induced swelling and creep of U–Mo alloy fuel. Journal of Nuclear Materials, 2013, 437, 37-46.	1.3	68
5	TEM characterization of U–7Mo/Al–2Si dispersion fuel irradiated to intermediate and high fission densities. Journal of Nuclear Materials, 2012, 424, 43-50.	1.3	59
6	Oxidation of aluminum alloy cladding for research and test reactor fuel. Journal of Nuclear Materials, 2008, 378, 220-228.	1.3	48
7	Advantages and disadvantages of using a focused ion beam to prepare TEM samples from irradiated U–10Mo monolithic nuclear fuel. Journal of Nuclear Materials, 2012, 424, 38-42.	1.3	46
8	Swelling of U(Mo)–Al(Si) dispersion fuel under irradiation – Non-destructive analyses of the LEONIDAS E-FUTURE plates. Journal of Nuclear Materials, 2012, 430, 246-258.	1.3	44
9	Microstructural evolution of U(Mo)–Al(Si) dispersion fuel under irradiation – Destructive analyses of the LEONIDAS E-FUTURE plates. Journal of Nuclear Materials, 2013, 441, 439-448.	1.3	44
10	Transmission electron microscopy characterization of the fission gas bubble superlattice in irradiated U–7 wt%Mo dispersion fuels. Journal of Nuclear Materials, 2015, 458, 115-121.	1.3	44
11	Temperature and dose dependence of fission-gas-bubble swelling in U3Si2. Journal of Nuclear Materials, 2009, 389, 443-449.	1.3	37
12	Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density. Journal of Nuclear Materials, 2017, 492, 195-203.	1.3	33
13	Effects of irradiation on the microstructure of U–7Mo dispersion fuel with Al–2Si matrix. Journal of Nuclear Materials, 2012, 425, 156-172.	1.3	29
14	MODELING OF INTERACTION LAYER GROWTH BETWEEN U-Mo PARTICLES AND AN AI MATRIX. Nuclear Engineering and Technology, 2013, 45, 827-838.	1.1	29
15	Microstructural characterization of irradiated U–7Mo/Al–5Si dispersion fuel to high fission density. Journal of Nuclear Materials, 2014, 454, 434-445.	1.3	27
16	Thermal stability of fission gas bubble superlattice in irradiated U–10Mo fuel. Journal of Nuclear Materials, 2015, 464, 1-5.	1.3	27
17	Microstructure of the irradiated U3Si2/Al silicide dispersion fuel. Journal of Nuclear Materials, 2011, 419, 97-104.	1.3	24
18	Fission induced swelling of U–Mo/Al dispersion fuel. Journal of Nuclear Materials, 2015, 465, 142-152.	1.3	21

Adam B Robinson

#	Article	IF	CITATIONS
19	Effects of irradiation on the interface between U-Mo and zirconium diffusion barrier. Journal of Nuclear Materials, 2018, 499, 567-581.	1.3	19
20	Swelling of U-7Mo/Al-Si dispersion fuel plates under irradiation – Non-destructive analysis of the AFIP-1 fuel plates. Journal of Nuclear Materials, 2016, 476, 270-292.	1.3	17
21	Irradiation performance of U–Mo–Ti and U–Mo–Zr dispersion fuels in Al–Si matrixes. Journal of Nuclear Materials, 2012, 427, 233-238.	1.3	14
22	SCANNING ELECTRON MICROSCOPY ANALYSIS OF FUEL/MATRIX INTERACTION LAYERS IN HIGHLY-IRRADIATED U-Mo DISPERSION FUEL PLATES WITH AI AND Al–Si ALLOY MATRICES. Nuclear Engineering and Technology, 2014, 46, 147-158.	1.1	14
23	Improved Irradiation Performance of Uranium-Molybdenum/Aluminum Dispersion Fuel by Silicon Addition in Aluminum. Nuclear Technology, 2013, 184, 42-53.	0.7	13
24	Observed Changes in As-Fabricated U-10Mo Monolithic Fuel Microstructures After Irradiation in the Advanced Test Reactor. Jom, 2017, 69, 2538-2545.	0.9	13
25	Swelling of U-Mo Monolithic Fuel: Developing a Predictive Swelling Correlation under Research Reactor Conditions. Journal of Nuclear Materials, 2021, 544, 152703.	1.3	11
26	Effect of stress evolution on microstructural behavior in U-Mo/Al dispersion fuel. Journal of Nuclear Materials, 2017, 487, 265-279.	1.3	9
27	Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding. Journal of Nuclear Materials, 2016, 479, 402-410.	1.3	8
28	Aluminum cladding oxidation of prefilmed in-pile fueled experiments. Journal of Nuclear Materials, 2016, 471, 136-148.	1.3	8
29	Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment. Jom, 2017, 69, 2546-2553.	0.9	8
30	Texture analyses and microstructural evolution in monolithic U-Mo nuclear fuel. Journal of Nuclear Materials, 2021, 544, 152677.	1.3	8
31	Detailed measurements of local thickness changes for U-7Mo dispersion fuel plates with Al-3.5Si matrix after irradiation at different powers in the RERTR-9B experiment. Journal of Nuclear Materials, 2017, 494, 448-460.	1.3	7
32	Microstructural characterization of an irradiated RERTR-6 U-7Mo/AA4043 alloy dispersion fuel plate specimen blister-tested to a final temperature of 500°C. Journal of Nuclear Materials, 2017, 488, 100-122.	1.3	6
33	TEM characterization of irradiated U-7Mo/Mg dispersion fuel. Journal of Nuclear Materials, 2017, 494, 380-397.	1.3	6
34	Microstructural response of the fuel phase in U-7Mo dispersion fuel irradiated at different powers. Journal of Nuclear Materials, 2020, 542, 152481.	1.3	5
35	Non-destructive analysis of swelling in the EMPIrE fuel test. Journal of Nuclear Materials, 2022, 564, 153683.	1.3	5
36	The use of U3Si2/Al dispersion fuel for high power research reactors. Journal of Nuclear Materials, 2020, 528, 151820.	1.3	4

#	Article	IF	CITATIONS
37	Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment. Metallurgical and Materials Transactions E, 2015, 2, 173-189.	0.5	2
38	Microstructural Characterization of a Mg Matrix U-Mo Dispersion Fuel Plate Irradiated in the Advanced Test Reactor to High Fission Density: SEM Results. Metallurgical and Materials Transactions E, 2016, 3, 71-89.	0.5	1
39	Microstructural characterization of as-fabricated monolithic plates with boron carbide, aluminum boride burnable absorbers. Journal of Nuclear Materials, 2022, 559, 153361.	1.3	1